Last Update: 2024-03-05
Prawn Version: 2.5.0
git commit: f82783b1l

How to read this manual

This manual is a collection of examples categorized by theme and organized from the least
to the most complex. While it covers most of the common use cases it is not a
comprehensive guide.

The best way to read it depends on your previous knowledge of Prawn and what you need
to accomplish.

If you are beginning with Prawn the first chapter will teach you the most basic concepts and
how to create pdf documents. For an overview of the other features each chapter beyond
the first either has a Basics section (which offer enough insight on the feature without
showing all the advanced stuff you might never use) or is simple enough with only a few
examples.

Once you understand the basics you might want to come back to this manual looking for
examples that accomplish tasks you need.

Advanced users are encouraged to go beyond this manual and read the source code
directly if any doubt is not directly covered on this manual.

Reading the examples

The title of each example is the relative path from the Prawn source manual/ folder.

The first body of text is the introductory text for the example. Generally it is a short
description of the features illustrated by the example.

Next comes the example source code block in fixed width font.

Most of the example snippets illustrate features that alter the page in place. The effect of
these snippets is shown right below a dashed line. If it doesn't make sense to evaluate the
snippet inline, a box with the link for the example file is shown instead.

Note that the stroke_axis method used throughout the manual is part of standard Prawn. It
is defined in this file:

https://github.com/prawnpdf/prawn/blob/master/lib/prawn/graphics.rb

https://github.com/prawnpdf/prawn/blob/master/lib/prawn/graphics.rb

Basic Concepts

This chapter covers the minimum amount of functionality you'll need to start using Prawn.

If you are new to Prawn this is the first chapter to read. Once you are comfortable with the

concepts shown here you might want to check the Basics section of the Graphics, Bounding
Box and Text sections.

The examples show:

e How to create new pdf documents in every possible way

e Where the origin for the document coordinates is. What are Bounding Boxes and
how they interact with the origin

e How the cursor behaves

e How to start new pages

¢ What the base unit for measurement and coordinates is and how to use other
convenient measures

e How to build custom view objects that use Prawn's DSL

Creating a PDF Document

basic_concepts/

There are three ways to create a PDF Document in Prawn: creating a new Prawn::Document
instance, or using the Prawn: :Document.generate method with and without block arguments.

The following snippet showcase each way by creating a simple document with some text
drawn.

When we instantiate the Prawn::Document object the actual pdf document will only be created
after we call render_file.

The generate method will render the actual pdf object after exiting the block. When we use
it without a block argument the provided block is evaluated in the context of a newly

created Prawn::Document instance. When we use it with a block argument a Prawn: :Document
instance is created and passed to the block.

The generate method without block arguments requires less typing and defines and renders
the pdf document in one shot. Almost all of the examples are coded this way.

Assignment

pdf = Prawn::Document.
pdf. ('Hello World")
pdf. ('assignment.pdf')

Implicit Block

Prawn: :Document. ('implicit.pdf') do
text 'Hello World'

end

Explicit Block

Prawn: :Document. ('explicit.pdf') do |pdf]
pdf. ('Hello World")

end

This code snippet was not evaluated inline. You may see its output by running
the example file located here:
https://github.com/prawnpdf/prawn/tree/master/manual/basic_concepts/

creation.rb

https://github.com/prawnpdf/prawn/tree/master/manual/basic_concepts/creation.rb
https://github.com/prawnpdf/prawn/tree/master/manual/basic_concepts/creation.rb

Origin

basic_concepts/

This is the most important concept you need to learn about Prawn:

PDF documents have the origin [0,08] at the bottom-left corner of the page.

A bounding box is a structure which provides boundaries for inserting content. A bounding
box also has the property of relocating the origin to its relative bottom-left corner. However,
be aware that the location specified when creating a bounding box is its top-left corner, not
bottom-left (hence the [1088, 300] coordinates below).

Even if you never create a bounding box explicitly, each document already comes with one
called the margin box. This initial bounding box is the one responsible for the document
margins.

So practically speaking the origin of a page on a default generated document isn't the
absolute bottom left corner but the bottom left corner of the margin box.

The following snippet strokes a circle on the margin box origin. Then strokes the boundaries
of a bounding box and a circle on its origin.

stroke_circle [0, 8], 10

bounding_box([188, 2681, width: 380, height: 168) do

stroke_bounds
stroke_circle [0, 8], 10
end

200.0

100.02 O

Cursor

basic_concepts/

We normally write our documents from top to bottom and it is no different with Prawn. Even
if the origin is on the bottom left corner we still fill the page from the top to the bottom. In
other words the cursor for inserting content starts on the top of the page.

Most of the functions that insert content on the page will start at the current cursor position
and proceed to the bottom of the page.

The following snippet shows how the cursor behaves when we add some text to the page

and demonstrates some of the helpers to manage the cursor position. The cursor method
returns the current cursor position.

text "the cursor is here: #{cursor}"
text "now it is here: #{cursor}"

move_down 100
text "on the first move the cursor went down to: #{cursor}"

move_up 50
text "on the second move the cursor went up to: #{cursor}"

move_cursor_to 50
text "on the last move the cursor went directly to: #{cursor}"

the cursor is here: 281.15749999999997
now it is here: 267.28549999999996

200.0

on the second move the cursor went up to: 189.54149999999996

éon the first move the cursor went down to: 153.41349999999994

100.6

on the last move the cursor went directly to: 50.0

Other Cursor Helpers

basic_concepts/

Another group of helpers for changing the cursor position are the pad methods. They accept
a numeric value and a block. pad will use the numeric value to move the cursor down both
before and after the block content. pad_top will only move the cursor before the block while
pad_bottom will only move after.

float is a method for not changing the cursor. Pass it a block and the cursor will remain on
the same place when the block returns.

stroke_horizontal_rule
pad(28) { text 'Text padded both before and after.' }

stroke_horizontal_rule
pad_top(28) { text 'Text padded on the top.' }

stroke_horizontal_rule
pad_bottom(20) { text 'Text padded on the bottom.' }

stroke_horizontal_rule
move_down 30

text 'Text written before the float block.'

float do
move_down 30
bounding_box([8, cursor], width: 208) do
text 'Text written inside the float block.'
stroke_bounds
end
end

text 'Text written after the float block.'

Text padded both before and after.

Text padded on the top.

Text padded on the bottom.

Text written before the float block.
Text written after the float block.

[rext written inside the tloat block.

Adding Pages

basic_concepts/

A PDF document is a collection of pages. When we create a new document be it with
Document.new or on a Document.generate block one initial page is created for us.

Some methods might create new pages automatically like text which will create a new page
whenever the text string cannot fit on the current page.

But what if you want to go to the next page by yourself? That is easy.

Just use the start_new_page method and a shiny new page will be created for you just like in
the following snippet.

text "We are still on the initial page for this example. Now I'll ask " \

'"Prawn to gently start a new page. Please follow me to the next page.'

start_new_page

text "See. We've left the previous page behind."

We are still on the initial page for this example. Now I'll ask Prawn to gently start a new page.
Please follow me to the next page.

Example Output

See. We've left the previous page

Measurement Extensions

basic_concepts/

The base unit in Prawn is the PDF Point. One PDF Point is equal to 1/72 of an inch.

There is no need to waste time converting this measure. Prawn provides helpers for
converting from other measurements to PDF Points.

Just require "prawn/measurement_extensions" and it will mix some helpers onto Numeric for
converting common measurement units to PDF Points.

require 'prawn/measurement_extensions'

%ilmm cm dm m in yd ft]. do |measurement|

text "1 #{measurement} in PDF Points: #{1. (measurement)} pt"
move_down 5.

end

1 mm in PDF Points: 2.834645669291339 pt
1 cm in PDF Points: 28.34645669291339 pt
1 dm in PDF Points: 283.46456692913387 pt
1 m in PDF Points: 2834.645669291339 pt
1inin PDF Points: 72 pt

1 yd in PDF Points: 2592 pt

1 ft in PDF Points: 864 pt

View

basic_concepts/

The recommended way to extend Prawn's functionality is to include the Prawn::View mixin in
your own class, which will make all Prawn::Document methods available to your custom
objects.

This approach is preferred over inheriting from Prawn::Document, as your state will be kept
completely separate from Prawn::Document's, thus avoiding accidental method collisions.

Note that Prawn::View lazily instantiates a Prawn::Document with default initialization settings,
such as page size, layout, margins, etc.

By defining your own document method you will be able to override those settings and
initialize a Prawn::Document to your heart's content. This method will be called repeatedly by
Prawn::View, so be sure to memoize the object by assigning it to an instance variable via the
| |= operator.

class Greeter
include Prawn::View

def initialize(name)
@name = name

end

def document

@document ||= Prawn::Document.new(page_size: 'A4', margin: 38)

end

def say_hello
font('Courier') do
text("Hello, #{@name}!")
end
end
end

greeter = Greeter.new('Gregory')

greeter.

greeter. ('greetings.pdf')

This code snippet was not evaluated inline. You may see its output by running
the example file located here:

https://github.com/prawnpdf/prawn/tree/master/manual/basic_concepts/view.rb

https://github.com/prawnpdf/prawn/tree/master/manual/basic_concepts/view.rb

Graphics

Here we show all the drawing methods provided by Prawn. Use them to draw the most
beautiful imaginable things.

Most of the content that you'll add to your pdf document will use the graphics package.
Even text is rendered on a page just like a rectangle so even if you never use any of the
shapes described here you should at least read the basic examples.

The examples show:

e All the possible ways that you can fill or stroke shapes on a page

e How to draw all the shapes that Prawn has to offer from a measly line to a mighty
polygon or ellipse

e The configuration options for stroking lines and filling shapes

e How to apply transformations to your drawing space

Stroke Axis
graphics/

To produce this manual we use the stroke_axis helper method within the examples.

stroke_axis prints the x and y axis for the current bounding box with markers in 100
increments. The defaults can be changed with various options.

Note that the examples define a custom :height option so that only the example canvas is
used (as seen with the output of the first line of the example code).

stroke_axis

stroke_axis(
at: [7e, 761,
height: 208,
step_length: 50,
negative_axes_length: 5,
color: 'BBOOFF',

)

stroke_axis(
at: [148, 1407,
width: 208,
height: Integer(cursor) - 148,
step_length: 20,

negative_axes_length: 40,
color: 'FFBGE8',

200 o
100 «
150 + 80
200.0 : 60
: 40 o

100 .
: 20 o

20 40 60 80 100 120 140 160 180 200
50

100.6

Fill and Stroke
graphics/

There are two drawing primitives in Prawn: fill and stroke.

These are the methods that actually draw stuff on the document. All the other drawing
shapes like rectangle, circle or line_to define drawing paths. These paths need to be either
stroked or filled to gain form on the document.

Calling these methods without a block will act on the drawing path that has been defined
prior to the call.

Calling with a block will act on the drawing path set within the block.

Most of the methods which define drawing paths have methods of the same name starting
with stroke_and fill_ which create the drawing path and then stroke or fill it.

No block
line [0, 2060], [168, 150]
stroke

rectangle [8, 168], 160, 100
fill

With block
stroke { line [200, 200], [3080, 150] }
fill { rectangle [200, 100], 108, 168 }

Method hook
stroke_line [408, 200], [500, 150]
fill_rectangle [408, 108], 160, 160

200.0.

100.G

200.0

100.¢

Lines and Curves
graphics/

Prawn supports drawing both lines and curves starting either at the current position, or
from a specified starting position.

line_to and curve_to set the drawing path from the current drawing position to the specified
point. The initial drawing position can be set with move_to. They are useful when you want to
chain successive calls because the drawing position will be set to the specified point
afterwards.

line and curve set the drawing path between the two specified points.

Both curve methods define a Bezier curve bounded by two aditional points provided as the
:bounds param.

line_to and curve_to
stroke do
move_to 6, O
line_to 100, 100
line_to 0, 108
curve_to [150, 200], bounds: [[26, 158], [120, 150]]
curve_to [200, 8], bounds: [[150, 200], [458, 18]]
end

line and curve

stroke do

line [368, 200], [400, 50]

curve [568, 0], [4688, 100], bounds: [[660, 208], [360, 298]]
end

Common Lines
graphics/

Prawn provides helpers for drawing some commonly used lines:

vertical_line and horizontal_line do just what their names imply. Specify the start and end
point at a fixed coordinate to define the line.

horizontal_rule draws a horizontal line on the current bounding box from border to border,
using the current y position.

stroke_color 'ff0600'

stroke do
just lower the current y position
move_down 50
horizontal_rule

vertical_line 108, 300, at: 50

horizontal_line 2668, 580, at: 150
end

300.0

200.0

100.6

Rectangles
graphics/

To draw a rectangle, just provide the upper-left corner, width and height to the rectangle
method.

There's also rounded_rectangle. Just provide an additional radius value for the rounded
corners.

stroke do
rectangle [100, 300], 1608, 200

rounded_rectangle [3060, 360], 100, 200, 20
end

400.0

200.0

100.6

Polygons
graphics/

Drawing polygons in Prawn is easy, just pass a sequence of points to one of the polygon
family of methods.

Just like rounded_rectangle we also have rounded_polygon. The only difference is the radius
param comes before the polygon points.

Triangle
stroke_polygon [56, 268], [50, 3080], [156, 360]

Hexagon
£i11_polygon [58, 1581, [156, 2081, [250, 1501, [258, 501, [158, 8], [50, 56]

Pentagram
pentagon_points = [500, 100], [438, 51, [319, 41], [319, 1591, [438, 195]
pentagram_points = [0, 2, 4, 1, 3]. { |i| pentagon_points[i] }

stroke_rounded_polygon(26, *pentagram_points)

300.0

200.0

100.6

Circles and Ellipses
graphics/

To define a circle all you need is the center point and the radius.

To define an ellipse you provide the center point and two radii (or axes) values. If the
second radius value is omitted, both radii will be equal and you will end up drawing a circle.

stroke_circle [1668, 300], 160

fi11_ellipse [208, 1008], 100, 58

fill_ellipse [408, 108], 56

400.0

300.

200.0

100.6

200.0

Line Width
graphics/

The line_width= method sets the stroke width for subsequent stroke calls.

Since Ruby assumes that an unknown variable on the left hand side of an assignment is a
local temporary, rather than a setter method, if you are using the block call to
Prawn::Document.generate without passing params you will need to call 1line_width on self.

y = 225

do |i]
case i
when @ then line_width = 18 # This call will have no effect
when 1 then self. 10
when 2 then self. 25
end

stroke do
horizontal_line 25, 75, at: y
rectangle [225, y + 25], 58, 5@
circle [450, y], 25

end

y -= 98
end

Stroke Cap
graphics/

The cap style defines how the edge of a line or curve will be drawn. There are three types:
:butt (the default), :round and :projecting_square.

The difference is better seen with thicker lines. With :butt lines are drawn starting and
ending at the exact points provided. With both :round and :projecting_square the line is
projected beyond the start and end points.

Just like 1line_width= the cap_style= method needs an explicit receiver to work.

self.

%i[butt round projecting_square]. do |cap, i

self. = cap

y = 258 - (i * 160)
stroke_horizontal_line 100, 3608, at: y
stroke_circle [400, y], 15

end

300.0

200.0

100.6

Stroke Join
graphics/

The join style defines how the intersection between two lines is drawn. There are three
types: :miter (the default), :round and :bevel.

Just like cap_style, the difference between styles is better seen with thicker lines.

self.

%i[miter round bevel]. do |style, i|
self. = style

y =200 - (i * 100)
stroke do
move_to(108, y)
line_to(208, y + 100)
line_to(300, vy)
end
stroke_rectangle [400, y + 75], 50, 50
end

Stroke Dash Pattern
graphics/

This sets the dashed pattern for lines and curves. The (dash) length defines how long each
dash will be.

The :space option defines the length of the space between the dashes.

The :phase option defines the start point of the sequence of dashes and spaces.

Complex dash patterns can be specified by using an array with alternating dash/gap lengths
for the first parameter (note that the :space option is ignored in this case).

move_down 20

dash([1, 2, 3, 2, 1, 5], phase: 6)
stroke_horizontal_line 50, 500
move_down 10

dash([1, 2, 3, 4, 5, 6, 7, 8])
stroke_horizontal_line 58, 568

base_y = cursor - 18

24, do |i]
length = (i / 4) + 1
space = length i space between dashes same length as dash
phase = @ i start with dash

case i % 4
when @ then base_y -= 10
when 1 then phase = length # start with space between dashes
when 2 then space = length * 8.5 # space between dashes half as long as dash
when 3
space = length * 8.5 # space between dashes half as long as dash
phase = length # start with space between dashes
end
base_y -= 10

dash(length, space: space, phase: phase)
stroke_horizontal_line 50, 580, at: base_y - (2 * i)
end

Color
graphics/

We can change the stroke and fill colors providing an HTML rgb 6 digit color code string
("AB1234") or 4 values for CMYK.

Fill with Orange using RGB (Unlike css, there is no leading i)
fill_color 'FF8844'
fill_polygon [568, 150], [156, 2608], [250, 156], [25@8, 50], [150, @], [50, 50]

Stroke with Purple using CMYK
stroke_color 50, 160, 6, @
stroke_rectangle [300, 3608], 208, 100

Both together
fill_and_stroke_circle [4608, 100], 50

Gradients
graphics/

Note that because of the way PDF renders radial gradients in order to get solid fill your start
circle must be fully inside your end circle. Otherwise you will get triangle fill like illustrated
in the example below.

self.

Linear Gradients
fill_gradient [0, 250], [168, 158], 'ffooee', '6066ff'
fill_rectangle [0, 250], 1608, 160

stroke_gradient [158, 156], [250, 25@8], '@@ffff', 'ffffeo’
stroke_rectangle [150, 258], 1608, 100

£i11_gradient [308, 2501, [400, 150], 'ff0000', '0000ff'
stroke_gradient [300, 150], [468, 258], '@affff', 'ffffeo’
fill_and_stroke_rectangle [368, 256], 100, 160

rotate 45, origin: [500, 200] do
stops = { @ => 'ffB060', 0.6 => '999900', 8.8 => '88ccOB', 1 => '4444FF' }
fill_gradient from: [460, 248], to: [540, 168], stops: stops
fill_rectangle [460, 240], 80, 80

end

Radial gradients
£i1l_gradient [58, 501, @, [50, 50], 78.71, 'ff0000', '0000Ff'
fill_rectangle [6, 100], 168, 100

stroke_gradient [200, 58], 45, [200, 58], 70.71, '@0ffff', 'ffffee’
stroke_rectangle [150, 100], 106, 108

stroke_gradient [358, 581, 45, [358, 581, 78.71, '80ffff', 'ffffeQ’
£i11_gradient [358, 501, 8, [350, 58], 78.71, 'ffee0', '0000ff
fill_and_stroke_rectangle [3608, 106], 100, 160

£i11_gradient [500, 1081, 50, [508, 8], 8, 'ff0000', '0000Ff'
£i11_rectangle [456, 1081, 100, 100

Transparency
graphics/

Although the name of the method is transparency, what we are actually setting is the opacity
for fill and stroke. So 8 means completely transparent and 1.8 means completely opaque.

You may call it providing one or two values. The first value sets fill opacity and the second
value sets stroke opacity. If the second value is omitted fill and stroke will have the same
opacity.

self. =5
fill_color 'ff06000'
fill_rectangle [6, 100], 5608, 100

fill_color '06006000'
stroke_color 'ffffff'

base_x = 160
[[e8.5, 11, 8.5, [1, 8.5]]. do |args|
transparent(*args) do
fill_circle [base_x, 100], 50
stroke_rectangle [base_x - 28, 100], 40, 80
end

base_x += 150
end

Soft Masks
graphics/

Soft masks are used for more complex alpha channel manipulations. You can use arbitrary
drawing functions for creation of soft masks. The resulting alpha channel is made of
greyscale version of the drawing (luminosity channel to be precise). So while you can use
any combination of colors for soft masks it's easier to use greyscales. Black will result in full
transparency and white will make region fully opaque.

Soft mask is a part of page graphic state. So if you want to apply soft mask only to a part of
page you need to enclose drawing instructions in save_graphics_state block.

save_graphics_state do
soft_mask do
0. (15) do |i|
fill_color 6, 6, 6, 1008.8 / 16.8 * (15 - i)
fill_circle [75 + (i * 25), 1068], 68
end

end

%w[0089ddc 963d97 eB3a3e f5821f fdb827 61bb46]. do |color, i
fill_color color
fill_rectangle [0, 60 + (i * 20)], 668, 26
end
end

Blend Modes
graphics/

Blend modes can be used to change the way two layers (images, graphics, text, etc.) are
blended together. The blend_mode method accepts a single blend mode or an array of blend
modes. PDF viewers should blend the layers based on the first recognized blend mode.

Valid blend modes in v1.4 of the PDF spec include :Normal, :Multiply, :Screen, :0Overlay,
:Darken, :Lighten, :ColorDodge, :ColorBurn, :HardLight, :SoftLight, :Difference, :Exclusion, :Hue,
:Saturation, :Color, and :Luminosity.

https://commons.wikimedia.org/wiki/File:Blend_modes_2.-bottom-
layer. jpg#/media/File:Blend_modes_2.-bottom-layer. jpg
bottom_layer = "#{Prawn::DATADIR}/images/blend_modes_bottom_layer.jpg"

https://commons.wikimedia.org/wiki/File:Blend_modes_1.-top-layer.jpgi/media/File:Blend_modes_1.-

top-layer.jpg
top_layer = "#{Prawn::DATADIR}/images/blend_modes_top_layer.jpg"

blend_modes = %i[
Normal Multiply Screen Overlay Darken Lighten ColorDodge
ColorBurn HardLight SoftlLight Difference Exclusion Hue
Saturation Color Luminosity

]

blend_modes. do |blend_mode, index|
x =5 + (index % 4 * 138)
y = cursor - (index / 4 * 195) - 5

image bottom_layer, at: [x, y], fit: [128, 120]
blend_mode(blend_mode) do

image top_layer, at: [x, y], fit: [128, 120]
end

y -= 130

fill_color '009ddc'
fill_rectangle [x, y], 75, 25
blend_mode(blend_mode) do

fill_color 'fdb827'

fill_rectangle [x + 56, y], 70, 25

y -= 30
fill_color '0066006'

text_box blend_mode. , at: [x, y]
end

Fill Rules
graphics/

Prawn's fill operators (fill and fill_and_stroke both accept a :fill_rule option. These rules
determine which parts of the page are counted as "inside" vs. "outside" the path. There are
two fill rules:

® :nonzero_winding_number (default): a point is inside the path if a ray from that point
to infinity crosses a nonzero "net number" of path segments, where path
segments intersecting in one direction are counted as positive and those in the
other direction negative.

® :even_odd: A point is inside the path if a ray from that point to infinity crosses an
odd number of path segments, regardless of direction.

The differences between the fill rules only come into play with complex paths; they are
identical for simple shapes.

pentagram = [[181, 95], [@, 36], [111, 190], [111, 0], [@8, 154]]

stroke_color 'ff0060'
line_width 2

text_box 'Nonzero Winding Number', at: [16, 200]
polygon(*pentagram.map { [x, y| [x + 58, y] })
fill_and_stroke

text_box 'Even-Odd', at: [338, 200]
polygon(*pentagram.map { [x, y| [x + 330, y] })
fill_and_stroke(fill_rule: :even_odd)

200.0

Nonzero Winding Number Even-Odd

100.6

100.0 200.0 300.0 400.0 500.0

Rotation
graphics/

This transformation is used to rotate the user space. Give it an angle and an :origin point
about which to rotate and a block. Everything inside the block will be drawn with the
rotated coordinates.

The angle is in degrees.

If you omit the :origin option the page origin will be used.

£i11_circle [278, 1801, 2

12. do |i]
rotate(i * 30, origin: [270, 188]) do

stroke_rectangle [350, 200], 80, 40
text_box "Rotated #{i * 3@8}°", size: 10, at: [360, 185]
end

end

S
;?
)
Q_ (]
Sa
@
@0
Rotated 90°
"'Hillllll
(£
QQ%VG
0o
%
2,

X
o Qo¥®
-08T pPaleloy o Rotated 0°
12 0,
e\'g,\o 1‘@,&
NS 0o
& %,
& 2 %
) o ©
N 3 %
N 3 2,
° [N
\'
Q

Translation
graphics/

This transformation is used to translate the user space. Just provide the x and y coordinates
for the new origin.

(3) do il
x =1 * 50
y =1* 100
translate(x, y) do
Draw a point on the new origin
fill_circle [@, 6], 2

draw_text "New origin after translation to [#{x}, #{y}]", at: [5, -3]

stroke_rectangle [1060, 50], 200, 30
text_box 'Top left corner at [1668, 56]', at: [118, 48], width: 188
end
end

Top left corner at [100, 50]

300.03 o New origin after translation to [150, 300]

Top left corner at [100, 50]

zoo.cé « New origin after translation to [100, 200]

Top left corner at [100, 50]

100.(% e New origin after translation to [50, 100]

Scaling
graphics/

This transformation is used to scale the user space. Give it an scale factor and an :origin
point and everything inside the block will be scaled using the origin point as reference.

If you omit the :origin option the page origin will be used.

width = 160
height = 58
y = 190

x = 50
stroke_rectangle [x, y], width, height
text_box 'reference rectangle', at: [x + 10, y - 18], width: width - 20

scale(2, origin: [x, y]) do
stroke_rectangle [x, y], width, height
text_box 'rectangle scaled from upper-left corner', at: [x, y - height - 5], width: width

end

x = 350
stroke_rectangle [x, y], width, height
text_box 'reference rectangle', at: [x + 18, y - 10], width: width - 28

scale(2, origin: [x + (width / 2), y - (height / 2)]) do

stroke_rectangle [x, y], width, height

text_box 'rectangle scaled from center', at: [x, y - height - 5], width: width
end

reference reference
rectangle rectangle

rectangle scaled
rectangle scaled from center

from upper-left
corner

Text

This is probably the feature people will use the most. There is no shortage of options when
it comes to text. You'll be hard pressed to find a use case that is not covered by one of the
text methods and configurable options.

The examples show:

¢ Text that flows from page to page automatically starting new pages when
necessary

e How to use text boxes and place them on specific positions

e What to do when a text box is too small to fit its content

e Flowing text in columns

¢ How to change the text style configuring font, size, alignment and many other
settings

e How to style specific portions of a text with inline styling and formatted text
e How to define formatted callbacks to reuse common styling definitions

e How to use the different rendering modes available for the text methods

e How to create your custom text box extensions

e How to use external fonts on your pdfs

e What happens when rendering text in different languages

Free Flowing Text
text/

Text rendering can be as simple or as complex as you want.

This example covers the most basic method: text. It is meant for free flowing text. The
provided string will flow according to the current bounding box width and height. It will also
flow onto the next page if the bottom of the bounding box is reached.

The text will start being rendered on the current cursor position. When it finishes rendering,
the cursor is left directly below the text.

This example also shows text flowing across pages following the margin box and other
bounding boxes.

text 'This text will flow to the next page. ' * 20

y_position = cursor
bounding_box([8, y_position], width: 280, height: 158) do

transparent(0.5) { stroke_bounds }

text 'This text will flow along this bounding box we created for it. ' * 5
end

bounding_box([360, y_position], width: 268, height: 158) do
transparent(0.5) { stroke_bounds } # This will stroke on one page

text 'Now look what happens when the free flowing text reaches the end of a bounding box ' \
"that is narrower than the margin box.#{' . ' * 280}It continues on the next page as if " \
"the previous bounding box was cloned. If we want it to have the same border as the one on ' \
"the previous page we will need to stroke the boundaries again.'

transparent(8.5) { stroke_bounds } # And this will stroke on the next
end

move_cursor_to 2060
span(360, position: :center) do
text 'Span is a different kind of bounding box as it lets the text flow gracefully onto the ' \

"next page. It doesn't matter if the text started on the middle of the previous page, when " \
"it flows to the next page it will start at the beginning.#{' _ ' * 580}" \
'T told you it would start on the beginning of this page.'

end

This text will flow to the next page. This text will flow to the next page. This text will flow to the next
page. This text will flow to the next page. This text will flow to the next page. This text will flow to
the next page. This text will flow to the next page. This text will flow to the next page. This text will
flow to the next page. This text will flow to the next page. This text will flow to the next page. This

text will flow to the next page. This text will flow to the next page. This text will flow to the next
page. This text will flow to the next page. This text will flow to the next page. This text will flow to

the next page. This text will flow to the next page. This text will flow to the next page. This text will
flow to the next page.

his text will flow along this bounding Now Took what happens when the
box we created for it. This text will free flowing text reaches the end of a
flow along this bounding box we bounding box that is narrower than
created for it. This text will flow along the marginbox..

this bounding box we created for it.
This text will flow along this bounding
box we created for it. This text will
flow along this bounding box we
created for it.

continues on the next page as if the previous bounding box was cloned. If we want it to have the
same border as the one on the previous page we will need to stroke the boundaries again.

Span is a different kind of bounding box as it lets the text flow
gracefully onto the next page. It doesn't matter if the text started
on the middle of the previous page, when it flows to the next page
it will start at the beginning.

Example Output

on the beginning of this page.

Positioned Text
text/

Sometimes we want the text on a specific position on the page. The text method just won't
help us.

There are two other methods for this task: draw_text and text_box.

draw_text is very simple. It will render text starting at the position provided to the :at option.
It won't flow to a new line even if it hits the document boundaries so it is best suited for
short text.

text_box gives us much more control over the output. Just provide :width and :height options
and the text will flow accordingly. Even if you don't provide a :width option the text will flow
to a new line if it reaches the right border.

Given that, text_box is the better option available.

draw_text "This draw_text line is absolute positioned. However don't " \
'expect it to flow even if it hits the document border',
at: [200, 170]

text_box 'This is a text box, you can control where it will flow by ' \
'specifying the :height and :width options',
at: [508, 150],
height: 100,
width: 1068

text_box 'Another text box with no :width option passed, so it will ' \

'flow to a new line whenever it reaches the right margin. ',
at: [200, 100]

This draw_text line is absolute positioned. However don't expect it tc

This is a text box,
you can control
where it will flow
by specifying the
‘height and :width
options

Another text box with no :width option passed, so it will flow
to a new line whenever it reaches the right margin.

Text Box Overflow
text/

The text_box method accepts both :width and :height options. So what happens if the text
doesn't fit the box?

The default behavior is to truncate the text but this can be changed with the :overflow

option. Available modes are :expand (the box will increase to fit the text) and :shrink_to_fit
(the text font size will be shrunk to fit).

If :shrink_to_fit mode is used with the :min_font_size option set, the font size will not be
reduced to less than the value provided even if it means truncating some text.

If the :disable_wrap_by_char is set to true then any text wrapping done while using the
:shrink_to_fit mode will not break up the middle of words.

string = 'This is the sample text used for the text boxes. See how it ' \
'behave with the various overflow options used.'

text string

y_position = cursor - 20

%i[truncate expand shrink_to_fit].

text_box string,
at: [i * 150, y_position],
width: 1680,
height: 58,
overflow: mode
end

string = 'If the box is too small for the text, :shrink_to_fit ' \
'can render the text in a really small font size.'

move_down 120
text string
y_position = cursor - 20
[nil, 8, 10, 12]. do |value, index]|
text_box string,
at: [index * 158, y_position],
width: 58,
height: 58,
overflow: :shrink_to_fit,
min_font_size: value

This is the sample text used for the text boxes. See how it behave with the various overflow options

used.

This is the sample
text used for the
text boxes. See

If the box is too small for the text, :shrink_to_fit can render the text in a really small font size.

If the box is too
small for the text,
:shrink_to_fit can
render the text in
a really small
font size.

This is the sample
text used for the
text boxes. See
how it behave with
the various
overflow options
used.

If the box is
too small for
the text,
:shrink_to_fit
can render

This is the sample text
used for the text boxes.
See how it behave with
the various overflow
options used.

If the box
is too
small for
the text,

Text Box Excess
text/

Whenever the text_box method truncates text, this truncated bit is not lost, it is the method
return value and we can take advantage of that.

We just need to take some precautions.

This example renders as much of the text as will fit in a larger font inside one text box and
then proceeds to render the remaining text in the default size in a second text_box.

string = 'This is the beginning of the text. It will be cut somewhere and ' \
'the rest of the text will proceed to be rendered this time by ' \
'calling another method.' + (' . ' * 50)

y_position = cursor - 20
excess_text = text_box(
string,
width: 300,
height: 58,
overflow: :truncate,

at: [160, y_position],
size: 18,

text_box(

excess_text,

width: 300,

at: [100, y_position - 100],
)

This is the beginning of the text. It will
be cut somewhere and the rest of the

text will proceed to be rendered this time by calling
anothermethod.

Column Box
text/

The column_box method allows you to define columns that flow their contents from one
section to the next. You can have a number of columns on the page, and only when the last
column overflows will a new page be created.

move_down 30

text 'The Prince', align: :center, size: 18

text 'Niccolo Machiavelli', align: :center, size: 14
move_down 30

column_box([@, cursor], columns: 2, width: bounds.) do
text ("#{<<~TEXT. (/\s+/, " ")\n\n" * 5)

A1l the States and Governments by which men are or ever have been ruled,
have been and are either Republics or Princedoms. Princedoms are either
hereditary, in which the sovereignty is derived through an ancient line
of ancestors, or they are new. New Princedoms are either wholly new, as
that of Milan to Francesco Sforza; or they are like limbs joined on to
the hereditary possessions of the Prince who acquires them, as the
Kingdom of Naples to the dominions of the King of Spain. The States thus
acquired have either been used to live under a Prince or have been free;

and he who acquires them does so either by his own arms or by the arms of

others, and either by good fortune or by merit.
TEXT
end

The Prince
Niccold Machiavelli

All the States and Governments by which men
are or ever have been ruled, have been and are
either Republics or Princedoms. Princedoms
are either hereditary, in which the sovereignty is
derived through an ancient line of ancestors, or
they are new. New Princedoms are either wholly
new, as that of Milan to Francesco Sforza; or
they are like limbs joined on to the hereditary
possessions of the Prince who acquires them,
as the Kingdom of Naples to the dominions of
the King of Spain. The States thus acquired
have either been used to live under a Prince or
have been free; and he who acquires them
does so either by his own arms or by the arms
of others, and either by good fortune or by
merit.

All the States and Governments by which men
are or ever have been ruled, have been and are
either Republics or Princedoms. Princedoms
are either hereditary, in which the sovereignty is
derived through an ancient line of ancestors, or
they are new. New Princedoms are either wholly
new, as that of Milan to Francesco Sforza; or
they are like limbs joined on to the hereditary
possessions of the Prince who acquires them,
as the Kingdom of Naples to the dominions of
the King of Spain. The States thus acquired
have either been used to live under a Prince or
have been free; and he who acquires them
does so either by his own arms or by the arms
of others, and either by good fortune or by
merit.

All the States and Governments by which men
are or ever have been ruled, have been and are
either Republics or Princedoms. Princedoms
are either hereditary, in which the sovereignty is
derived through an ancient line of ancestors, or
they are new. New Princedoms are either wholly
new, as that of Milan to Francesco Sforza; or
they are like limbs joined on to the hereditary
possessions of the Prince who acquires them,
as the Kingdom of Naples to the dominions of
the King of Spain. The States thus acquired
have either been used to live under a Prince or
have been free; and he who acquires them
does so either by his own arms or by the arms

of others, and either by good fortune or by
merit.

All the States and Governments by which men
are or ever have been ruled, have been and are
either Republics or Princedoms. Princedoms
are either hereditary, in which the sovereignty is
derived through an ancient line of ancestors, or
they are new. New Princedoms are either wholly
new, as that of Milan to Francesco Sforza; or
they are like limbs joined on to the hereditary
possessions of the Prince who acquires them,
as the Kingdom of Naples to the dominions of
the King of Spain. The States thus acquired
have either been used to live under a Prince or
have been free; and he who acquires them
does so either by his own arms or by the arms
of others, and either by good fortune or by
merit.

All the States and Governments by which men
are or ever have been ruled, have been and are
either Republics or Princedoms. Princedoms
are either hereditary, in which the sovereignty is
derived through an ancient line of ancestors, or
they are new. New Princedoms are either wholly
new, as that of Milan to Francesco Sforza; or
they are like limbs joined on to the hereditary
possessions of the Prince who acquires them,
as the Kingdom of Naples to the dominions of
the King of Spain. The States thus acquired
have either been used to live under a Prince or
have been free; and he who acquires them
does so either by his own arms or by the arms
of others, and either by good fortune or by
merit.

Fonts
text/

The font method can be used in three different ways.

If we don't pass it any arguments it will return the current font being used to render text.

If we just pass it a font name it will use that font for rendering text through the rest of the
document.

It can also be used by passing a font name and a block. In this case the specified font will
only be used to render text inside the block.

The default font is Helvetica.

text "Let's see which font we are using: #{font.

font 'Times-Roman'
text 'Written in Times.'

font('Courier') do
text 'Written in Courier because we are inside the block.'

end

text 'Written in Times again as we left the previous block.'

text "Let's see which font we are using again: #{font.

font 'Helvetica'
text 'Back to normal.'

Let's see which font we are using: Prawn::Fonts::AFM< Helvetica: 12 >
Written in Times.

Witten in Courier because we are inside the bl ock.
Written in Times again as we | eft the previous block.

L et's see which font we are using again: Prawn::Fonts::AFM< Times-Roman: 12 >
Back to normal.

Font Size
text/

The font_size method works just like the font method.
In fact we can even use font with the :size option to declare which size we want.
Another way to change the font size is by supplying the :size option to the text methods.

The default font size is 12.

text "Let's see which is the current font_size: #{font_size.

font_size 16
text 'Yeah, something bigger!

font_size(25) { text 'Even bigger!' }

text 'Back to 16 again.'

text 'Single line on 20 using the :size option.', size: 20
text 'Back to 16 once more.'

font('Courier', size: 18) do

text 'Yeah, using Courier 18 courtesy of the font method.'
end

font('Helvetica', size: 12)

text 'Back to normal'

Let's see which is the current font_size: 12

Yeah, something bigger!

Even bigger!

Back to 16 again.

Single line on 20 using the :size option.
Back to 16 once more.

Yeah, using Courier 10 courtesy of the font nethod.
Back to norma

Font Style
text/

Most font families come with some styles other than normal. Most common are bold, italic
and bold_italic.

The style can be set the using the :style option, with either the font method which will set
the font and style for rest of the document, or with the inline text methods.

fonts = %w[Courier Helvetica Times-Roman]

styles = %i[bold bold_italic italic normal]

fonts. do |example_font]|
move_down 20

styles. do |style|
font example_font, style: style
text "I'm writing in #{example_font} (#{style})"
end
end

I"mwiting in Courier (bold)
I"'mwiting in Courier (bold_italic)
|"mwiting in Courier (italic)
l"mwiting in Courier (normal)

I'm writing in Helvetica (bold)

I'm writing in Helvetica (bold_italic)
I'm writing in Helvetica (italic)

I'm writing in Helvetica (normal)

I'm writing in Times-Roman (bold)

I'm writing in Times-Roman (bold _italic)
I'mwriting in Times-Roman (italic)

I'm writing in Times-Roman (normal)

Color
text/

The :color attribute can give a block of text a default color, in RGB hex format or 4-value
CMYK.

text 'Default color is black'
move_down 25

text 'Changed to red', color: 'FF0060'
move_down 25

text 'CMYK color', color: [22, 55, 79, 36]

move_down 25

text(
"Also works with <color rgb='ff08000'>inline</color> formatting"
color: 'GBOOFF',
inline_format: true,

)

Default color is black

Changed to red

CMYK color

Also works with inline formatting

Alignment
text/

Horizontal text alignment can be achieved by supplying the :align option to the text
methods. Available options are :1eft (default), :right, :center, and :justify.

Vertical text alignment can be achieved using the :valign option with the text methods.
Available options are :top (default), :center, and :bottom.

Both forms of alignment will be evaluated in the context of the current bounding_box.

text 'This text should be left aligned'
text 'This text should be centered', align: :center
text 'This text should be right aligned', align: :right

y = cursor - 20
bounding_box([8, y], width: 250, height: 228) do
text 'This text is flowing from the left. ' * 4

move_down 15
text 'This text is flowing from the center. ' * 3, align: :center

move_down 15
text 'This text is flowing from the right. ' * 4, align:

move_down 15
text 'This text is justified. ' * 6, align: :justify
transparent(6.5) { stroke_bounds }

end

bounding_box([270, y], width: 258, height: 226) do
text 'This text should be vertically top aligned'

text 'This text should be vertically centered', valign: :center
text 'This text should be vertically bottom aligned', valign: :bottom
transparent(0.5) { stroke_bounds }

end

This text should be left aligned

This text should be centered

This text should be right aligned

his text is flowing from the left. This text is
flowing from the left. This text is flowing from
the left. This text is flowing from the left.

This text is flowing from the center. This text is
flowing from the center. This text is flowing
from the center.

This text is flowing from the right. This text is
flowing from the right. This text is flowing from
the right. This text is flowing from the right.

This text is justified. This text is justified. This
text is justified. This text is justified. This text is
justified. This text is justified.

his text should be vertically top aligned

This text should be vertically centered

This text should be vertically bottom aligned

Leading
text/

Leading is the additional space between lines of text.

The leading can be set using the default_leading method which applies to the rest of the
document or until it is changed, or inline in the text methods with the :1eading option.

The default leading is 8.

string = 'Hey, what did you do with the space between my lines? ' * 8

text string, leading: @

move_down 28
default_leading 5
text string

move_down 20
text string, leading: 10

Hey, what did you do with the space between my lines? Hey, what did you do with the space
between my lines? Hey, what did you do with the space between my lines? Hey, what did you do
with the space between my lines? Hey, what did you do with the space between my lines? Hey,
what did you do with the space between my lines? Hey, what did you do with the space between
my lines? Hey, what did you do with the space between my lines?

Hey, what did you do with the space between my lines? Hey, what did you do with the space
between my lines? Hey, what did you do with the space between my lines? Hey, what did you do
with the space between my lines? Hey, what did you do with the space between my lines? Hey,
what did you do with the space between my lines? Hey, what did you do with the space between
my lines? Hey, what did you do with the space between my lines?

Hey, what did you do with the space between my lines? Hey, what did you do with the space
between my lines? Hey, what did you do with the space between my lines? Hey, what did you do
with the space between my lines? Hey, what did you do with the space between my lines? Hey,
what did you do with the space between my lines? Hey, what did you do with the space between

my lines? Hey, what did you do with the space between my lines?

Kerning and Character Spacing
text/

Kerning is the process of adjusting the spacing between characters in a proportional font. It
is usually done with specific letter pairs. We can switch it on and off if it is available with the
current font. Just pass a boolean value to the :kerning option of the text methods.

Character Spacing is the space between characters. It can be increased or decreased and
will have effect on the whole text. Just pass a number to the :character_spacing option from
the text methods.

font_size(30) do
text_box 'With kerning:', kerning: true, at: [8, y - 40]
text_box 'Without kerning:', kerning: false, at: [6, y - 80]

text_box 'Tomato', kerning: true, at: [238, y - 40]
text_box 'Tomato', kerning: false, at: [238, y - 86]

text_box 'WAR', kerning: true, at: [368, y - 48]
text_box 'WAR', kerning: false, at: [368, y - 86]

text_box 'F.', kerning: true, at: [478, y - 46]
text_box 'F.', kerning: false, at: [478, y - 88]
end

move_down 80

string = 'What have you done to the space between the characters?'
[-2, -1, 0, 8.5, 1, 2]. do |spacing]|
move_down 28
text "#{string} (character_spacing: #{spacing})",
character_spacing: spacing
end

With kerning: Tomato WAR FE
Without kerning: Tomato WAR F.

Whethaeyoudmebhepecebetneenthedrarades? (dhareder a0 g-2)

What have you done to the space between the characters? (character_spacing: -1)

What have you done to the space between the characters? (character_spacing: 0)

What have you done to the space between the characters? (character_spacing: 0.5)
What have you done to the space between the characters? (character_spacing: 1)

What have you done to the space between the characters?
(character_spacing: 2)

Paragraph Indentation
text/

Prawn strips all whitespace from the beginning and the end of strings so there are two ways
to indent paragraphs:

One is to use non-breaking spaces which Prawn won't strip. One shortcut to using them is
the Prawn::Text: :NBSP

The other is to use the :indent_paragraphs option with the text methods. Just pass a number
with the space to indent the first line in each paragraph.

Using non-breaking spaces
text (" ' * 18) + ("This paragraph won't be indented. " * 18) +
"\n#t{Prawn::Text::NBSP * 10}" + ('This one will with NBSP. ' * 18)

move_down 20
text "#{'This paragraph will be indented. ' * 18}\n#{'This one will too. ' * 10}",

indent_paragraphs: 60

move_down 20

text 'FROM RIGHT TO LEFT:'

text "#{'This paragraph will be indented. ' * 18}\n#{'This one will too. ' * 10}",
indent_paragraphs: 60,
direction: :rtl

This paragraph won't be indented. This paragraph won't be indented. This paragraph won't be
indented. This paragraph won't be indented. This paragraph won't be indented. This paragraph
won't be indented. This paragraph won't be indented. This paragraph won't be indented. This
paragraph won't be indented. This paragraph won't be indented.

This one will with NBSP. This one will with NBSP. This one will with NBSP. This one will with
NBSP. This one will with NBSP. This one will with NBSP. This one will with NBSP. This one will with
NBSP. This one will with NBSP. This one will with NBSP.

This paragraph will be indented. This paragraph will be indented. This paragraph will be
indented. This paragraph will be indented. This paragraph will be indented. This paragraph will be
indented. This paragraph will be indented. This paragraph will be indented. This paragraph will be
indented. This paragraph will be indented.

This one will too. This one will too. This one will too. This one will too. This one will too.
This one will too. This one will too. This one will too. This one will too. This one will too.

FROM RIGHT TO LEFT:

eb lliw hpargarap sihT .detnedni eb lliw hpargarap sihT .detnedni eb lliw hpargarap sihT
eb lliw hpargarap sihT .detnedni eb lliw hpargarap sihT .detnedni eb Illiw hpargarap sihT .detnedni
eb lliw hpargarap sihT .detnedni eb lliw hpargarap sihT .detnedni eb lliw hpargarap sihT .detnedni

.detnedni eb lliw hpargarap sihT .detnedni
.00t lliw eno sihT .oot lliw eno sihT .oot lliw eno sihT .oot lliw eno sihT .oot lliw eno sihT

.oot lliw eno sihT .oot lliw eno sihT .oot Illiw eno sihT .oot lliw eno sihT .oot lliw eno sihT

Rotation
text/

Rotating text is best avoided on free flowing text, so this example will only use the text_box
method as we can have much more control over its output.

To rotate text all we need to do is use the :rotate option passing an angle in degrees and an
optional :rotate_around to indicate the origin of the rotation (the default is :upper_left).

width = 168
height = 60
angle = 30

x = 200

y = cursor - 30

stroke_rectangle [8, y], width, height
text_box(

'This text was not rotated',

at: [e, yl,

width: width,

height: height,
)

stroke_rectangle [8, y - 168], width, height
text_box(

'This text was rotated around the center',

at: [@8, y - 168@],

width: width,

height: height,

rotate: angle,

rotate_around: :center,

%i[lower_left upper_left lower_right upper_right]. do |corner, index|
y -= 188 if index ==
stroke_rectangle [x + ((index % 2) * 208), y], width, height
text_box(
"This text was rotated around the #{corner} corner.",
at: [x + ((index % 2) * 200), yl,
width: width,
height: height,
rotate: angle,
rotate_around: corner,

)

nis text was not
rotated

<

2

Inline Formatting
text/

Inline formatting gives you the option to format specific portions of a text. It uses HTML-
esque syntax inside the text string. Supported tags are: b (bold), i (italic), u (underline),
strikethrough, sub (subscript), sup (superscript).

The following tags accept specific attributes: font accepts size, name, and character_spacing;
color accepts rgb and set of ¢, m, y, and k; link accepts href for external links.

%wlb i u strikethrough sub sup]. do [tag|
text "Just your regular text <#{tag}>except this portion</#{tag}> " \
"is using the #{tag} tag",
inline_format: true
move_down 18
end

text "This line uses " \
"all the font tag attributes in " \
"a single line. ",
inline_format: true

move_down 10

text "Coloring in <color rgb='FFBOFF'>both RGB</color> " \
"<color c='108' m='8"' y='0" k='8'>and CMYK</color>",
inline_format: true

move_down 10

text 'This an external link to the ' \
"<u><link href='https://prawnpdf.org/'>Prawn home page" \
'</link></u>",

inline_format: true

Just your regular text except this portion is using the b tag

Just your regular text except this portion is using the i tag

Just your regular text except this portion is using the u tag

Just your regular text exeeptthisportion is using the strikethrough tag

Just your regular text except is portion IS USING the sub tag
Just your regular text exceptthis portion jg sing the sup tag
This liN€ uses al | the font t ag attributesina single line.

Coloring in both RGB and CMYK
This an external link to the Prawn home page

https://prawnpdf.org/

Formatted Text
text/

There are two other text methods available: formatted_text and formatted_text_box.

These are useful when the provided text has numerous portions that need to be formatted
differently. As you might imply from their names the first should be used for free flowing
text just like the text method and the last should be used for positioned text just like
text_box.

The main difference between these methods and the text and text_box methods is how the
text is provided. The formatted_text and formatted_text_box methods accept an array of
hashes. Each hash must provide a :text option which is the text string and may provide the
following options: :styles (an array of symbols), :size (the font size), :character_spacing
(additional space between the characters), :font (the name of a registered font), :color (the
same input accepted by fill_color and stroke_color), :1ink (an URL to create a link), and
:local (a link to a local file).

formatted_text [
{ text: 'Some bold. ', styles: [:bold] },
{ text: 'Some italic. ', styles: [:italic] },
{ text: 'Bold italic. ', styles: %i[bold italic] },

, size: 20 },

{ text: 'Bigger Text.
{ text: 'More spacing. ', character_spacing: 3 },

{ text: 'Different Font. ', font: 'Courier' },

{ text: 'Some coloring. ', color: 'FF@OFF' },

{ text: 'Link to the home page. ', color: '@806FF', link: 'https://prawnpdf.org/' },
{ text: 'Link to a local file. ', color: 'O0@BFF', local: 'README.md' },

formatted_text_box(
[

{ text: 'Just your regular' },

{ text: ' text_box ', font: 'Courier' },

{
text: 'with some additional formatting options added to the mix.',
color: [58, 100, 8, 0],
styles: [:italic],

Jis
1;
at: [100, 100],
width: 208,
height: 108,

Example Output

Some bold. Some italic. Bold italic. Blgger Text. More spacing. Different
Font. Some coloring. Link to the home page. Link to a local file.

Just your regular t ext _box with
some additional formatting options
added to the mix.

https://prawnpdf.org/

Formatted Text Callbacks
text/

The :callback option is also available for the formatted text methods.

This option accepts an object (or array of objects) on which two methods will be called if
defined: render_behind and render_in_front. They are called before and after rendering the
text fragment and are passed the fragment as an argument.

This example defines two new callback classes and provide callback objects for the
formatted_text.

class HighlightCallback
def initialize(options)
@color, @document = options. (:color, :document)
end

def render_behind(fragment)
original_color = @document.
@document. = @color
@document. (fragment. , fragment. , fragment.
@document. = original_color
end
end

class ConnectedBorderCallback
def initialize(options)
@radius, @document = options. (:radius, :document)
end

def render_in_front(fragment)
points = [fragment. , fragment. , fragment. , fragment.
@document. (*points)
points. { |point| @document. (point, @radius) }
end
end

highlight = HighlightCallback.new(color: 'ffff@8', document: self)
border = ConnectedBorderCallback.new(radius: 2.5, document: self)

formatted_text(
[
{ text: 'hello', callback: highlight },
{ text: ' "},
{ text: 'world', callback: border },
{ text: ' "3,
{ text: 'hello world', callback: [highlight, border] },
1y
size: 20,

)

Example Output

Text Rendering Modes
text/

You have already seen how to set the text color using both inline formatting and the format
text methods. There is another way by using the graphics methods fill_color and
stroke_color.

When reading the graphics reference you learned about fill and stroke. If you haven't read it
before, read it now before continuing.

Text can be rendered by being filled (the default mode) or just stroked, or both filled and
stroked. This can be set using the text_rendering_mode method or the :mode option on the text
methods.

fill_color '66ff00'
stroke_color '00006ff'

font_size(40) do
normal rendering mode: fill

text 'This text is filled with green.'

inline rendering mode: stroke
text 'This text is stroked with blue', mode: :stroke

block rendering mode: fill and stroke

text_rendering_mode(:fill_stroke) do

text 'This text is filled with green and stroked with blue'
end
end

This text Is filled with green.
This text is stroked with blue
This text is filled with green
and stroked with blue

Text Box Extensions
text/

We've already seen one way of using text boxes with the text_box method. Turns out this
method is just a convenience for using the Prawn::Text::Box class as it creates a new object
and call render on it.

Knowing that any extensions we add to Prawn::Text::Box will take effect when we use the
text_box method. To add an extension all we need to do is append the
Prawn::Text::Box.extensions array with a module.

module TriangleBox
def available_width
height + 25
end
end

y_position = cursor
width = 160
height = 100

Prawn::Text: :Box. << TriangleBox
stroke_rectangle([8, y_position], width, height)
text_box(

"A' * 100,

at: [@, y_position],

width: width,

height: height,
)

Prawn::Text::Formatted: :Box. << TriangleBox
stroke_rectangle([200, y_position], width, height)
formatted_text_box(

[{ text: '"A" * 180, color: '089968' }],

at: [200, y_position],

width: width,

height: height,
)

Here we clear the extensions array
Prawn::Text: :Box.

Prawn::Text::Formatted: :Box.

Example Output

Single Usage Fonts
text/

The PDF format has some built-in font support. If you want to use other fonts in Prawn you
need to embed the font file.

Doing this for a single font is extremely simple. Remember the Styling font example?
Another use of the font method is to provide a font file path and the font will be embedded
in the document and set as the current font.

This is reasonable if a font is used only once, but, if a font used several times, providing the
path each time it is used becomes cumbersome. The example on the next page shows a
better way to deal with fonts which are used several times in a document.

Using a TTF font file

font("#{Prawn: :ManualBuilder: :DATADIR}/fonts/DejaVuSans.ttf") do
text 'Written with the DejaVu Sans TTF font.'

end

move_down 20

text 'Written with the default font.'
move_down 20

Using an DFONT font file

font("#{Prawn: :ManualBuilder: :DATADIR}/fonts/Panic+Sans.dfont") do
text 'Written with the Panic Sans DFONT font'

end

move_down 20

text 'Written with the default font once more.'

Written with the DejaVu Sans TTF font.
Written with the default font.
Written with the Panic Sans DFONT font

Written with the default font once more.

Registering Font Families
text/

Registering font families will help you when you want to use a font over and over or if you
would like to take advantage of the :style option of the text methods and the b and i tags
when using inline formatting.

To register a font family update the font_families hash with the font path for each style you
want to use.

Registering a single external font
font_families. ¢
'DejaVu Sans' => {
normal: "#{Prawn::ManualBuilder::DATADIR}/fonts/DejaVuSans.ttf",
}s
)

font('DejaVu Sans') do

text 'Using the DejaVu Sans font providing only its name to the font method'
end
move_down 28

Registering a DFONT package
font_path = "#{Prawn::ManualBuilder::DATADIR}/fonts/Panic+Sans.dfont"
font_families. ¢
'Panic Sans' => {
normal: { file: font_path, font: 'PanicSans' },
italic: { file: font_path, font: 'PanicSans-Italic' },
bold: { file: font_path, font: 'PanicSans-Bold' },
bold_italic: { file: font_path, font: 'PanicSans-BoldItalic' },
o
)

font 'Panic Sans'
text 'Also using Panic Sans by providing only its name'
move_down 20

text 'Taking advantage of the <i>inline formatting</i>',

inline_format: true
move_down 20

%i[bold bold_italic italic normal]. do |style]
text "Using the #{style} style option.", style: style
move_down 10

end

Using the DejaVu Sans font providing only its name to the font method
Also using Panic Sans by providing only its name
Taking advantage of the inline formatting

Using the bold style option.
Using the bold_italic style option.
Using the italic style option.

Using the normal style option.

UTF-8
text/

Multilingualization isn't much of a problem on Prawn as its default encoding is UTF-8. The
only thing you need to worry about is if the font support the glyphs of your language.

text 'Take this example, a simple Euro sign:
text '€', size: 32
move_down 28

text 'This works, because € is one of the few ' \
'non-ASCII glyphs supported in PDF built-in fonts.'

move_down 20

text 'For full internationalized text support, we need to use external fonts:'

move_down 20

font("#{Prawn: :ManualBuilder: :DATADIR}/fonts/DejaVuSans.ttf") do

text 'uvalov ¢aye v B0vapo - touto ou pe BAdmte .
text 'There you go.'
end

Take this example, a simple Euro sign:
This works, because € is one of the few non-ASCII glyphs supported in PDF built-in fonts.
For full internationalized text support, we need to use external fonts:

oA vdayevd va at T T € BA mTEL
There you go.

Line Wrapping
text/

Line wrapping happens on white space or hyphens. Soft hyphens can be used to indicate
where words can be hyphenated. Non-breaking spaces can be used to display space
without allowing for a break.

For writing styles that do not make use of spaces, the zero width space serves to mark word
boundaries. Zero width spaces are available only with external fonts.

text "Hard hyphens:\n" \
'Slip-sliding away, slip sliding awaaaay. You know the ' \
"nearer your destination the more you're slip-sliding away."
move_down 20

shy = Prawn::Text::SHY

text "Soft hyphens:\n" \
"Slip slidit{shy}ing away, slip slidi#{shy}ing away. You know the " \
"nearer your destinat#{shy}ion the more you're slip slidi{shy}ing away."

move_down 20

nbsp = Prawn::Text::NBSP
text "Non-breaking spaces:\n" \
"Slip#t{nbsp}sliding away, slip#{nbsp}sliding awaaaay. You know the " \
"nearer your destination the more you're slip#{nbsp}sliding away."
move_down 20

font_families. ('Jigmo' => { normal: "#{Prawn::ManualBuilder::DATADIR}/fonts/Jigmo.ttf" })
font('Jigmo', size: 16) do
text "No word boundaries:\nHE a1 2. [ElFift a4 a0 AP HEURL A i i3
'ERIDBHIRY N HANE ARG DT ARG SSHE BIATE T Rk th AN 2 A ‘ ~
MIREAFEE RN 1o B ATERY 2 AR BT T A T AT A HRURL H i X ID K JDBHIHYAZ. '\
YEANERIERAG TR EAYSCEEE BITCR I FRIMAS R Mg, SXRERYIE. IRELIER M5l 1o
move_down 20

zwsp = Prawn::Text::ZWSP
text "Invisible word boundaries:\n®#{zwsp} n[i H{zwsp}i2. #{zwsp}ElTiftit{zwsp}iaf" \

"#{zwsp} ID#{zwsp} A tt{zwsp} i /st {zwsp } 1 H{ zwsp } DBH{ zwsp } F i { zwsp } N 2. #{zwsp} "\
"#{zwsp}/NEH#{zwsp HU{zwsp} K1TH{ zwsp} DL I #{zwsp} [1UH#{zwsp} Kt {zwsp} tft{zwsp =" \
"#{zwsp} 2 Nit{ zwsp} A { zwsp HCH{zwsp} [kit{zwsp} i {zwsp} A~ 2 ti{zwsp}H{ [2 #{zwsp} AfEF . "\
"{zwsp LA TEDH{ zwsp I { zwsp bkt { zwsp } HE H{ zwsp} 6520 1o #{zwsp} EH{zwsp} A"\
"#{zwsp}ic. H{zwsp}lHlTi{H{zwsp} vi Frit{zwsp} Al H{zwsp} FH{zwsp} 1T LU{ zwsp 4 i { zwsp FURL" \
"#{zwsp}i{zwsp} i flH{ zwsp }iX 1 {zwsp} ID#{ zwsp } A<t { zwsp } il [/t { zwsp } 11 { zwsp } DB { zwsp}" \
" {zwsp AL #{zwsp} B #H{zwsp/ NE Htt{ zwsp HE#{zwsp} /R { zwsp } UL [ET#H{zwsp} =A9" \
"{zwsp}tt{zwsp Y #{zwsp HE #H{zwsp} Dt { zwsp } Kt {zwsp H[CH{zwsp} [Ktt{zwsp}tiit{zwsp} A~ 2" \
"{zwsp T2t {zwsp} HEEE . #{zwspiXFERYTE. #{zwsp K { zwsp} kit { zwsp} i {zwsp 0520 o "

Hard hyphens:
Slip-sliding away, slip sliding awaaaay. You know the nearer your destination the more you're slip-
sliding away.

Soft hyphens:
Slip sliding away, slip sliding away. You know the nearer your destination the more you're slip slid-
ing away.

Non-breaking spaces:
Slip sliding away, slip sliding awaaaay. You know the nearer your destination the more you're
slip sliding away.

No word boundaries:

BRI (Ao E a4 = aT LA HEURL H i i A DKo 1 28 DB Hh Y
N B NE R IR 0T A SERE SR TE B R AE T 2 ME S
RIS PRERHEH S o BERTTERYRD Ao 3a 4R 5w LA IRURL H
Jo XA TD R I DB G N 2% B/ INE R OR Y DT i1 DS EE 5
IR TE TRt 2 M SXHERTE . TRERIER SN 1

Invisible word boundaries:

HAMARE. [T E a4t T nT LA HEURL A i s TD Ko [8 DB Hh Y
N HAYINERHE R T By SSHHE BICRIE T SR A R A 2 M5
SEREITRD ORERHR D 1o BERTAIYZ . [RIoifl a4 T il LU HEURL H
Jo XA DKol I SEBIDB g N Y. BN/ N ARAY 0L 1Ry S8 E
BRI R R tWAE T 2 M. SXRERE . TRELER) 1,

Right-to-Left Text

text/

Prawn can be used with right-to-left text. The direction can be set document-wide, on
particular text, or on a text-box. Setting the direction to :rtl automatically changes the
default alignment to :right.

You can even override direction on an individual fragment. The one caveat is that two
fragments going against the main direction cannot be placed next to each other without
appearing in the wrong order.

Writing bidirectional text that combines both left-to-right and right-to-left languages is easy

using the bidi Ruby Gem and its render_visual function. See https://github.com/elad/ruby-
bidi for instructions and an example using Prawn.

set the direction document-wide

self.

1]\/J\I

tf", size: 16) do
E R R ASE AT 2 MEFE A NE R R R U B\
RAS DL SR B S B TE T SRt A 2@ A MESEE

text long_text

move_down 20

text 'You can override the document direction.', direction: :1ltr

move_down 20

formatted_text [

{ text:
{ text:
{ text:
{ text:
{ text:
{ text:

{

text:

AR 2 AR B L T e T T AR),
'URL", direction: :1tr },

P ST)

'ID', direction: :1tr },

Skl R Y

'DB', direction: :1tr },

"IN B NEHRIE IR DT A SCEEE BN E Rkt AR A A MR

move_down 20

formatted_text [

{ text:
{ text:
{ text:
{ text:
{ text:

]

"Ry, AU TEG RN T T L),

'this', direction: :1tr },

"won't", direction: :1tr, size: 24 },

'‘work', direction: :1tr },

PRGN HAS N ORI DU SCBE B e

https://github.com/elad/ruby-bidi
https://github.com/elad/ruby-bidi

&/ NNEEEME 2 A T2 AR FIEXNILEAS B CHY L i TR AR TG NAE.
HYPORAE ERITE/ NN ME A A e AR R TERINUEL (= B <Ry L DAY /RE R
INNEERME AR ASR N TEKINUE (5 $E OG- i 1

You can override the document direction.

F DB R A D>k 1D -5 1 i HHURL e 2 LURT T4 s AR Jofmlo 2 iyt T B
o AR AR MRS AS B SCHY b A PRAE R &/ NG W
o [ENHCHIERLIR. TRAYAEX

AV S workWON | T thisBEERLL o A i (LRI, i o]
00 2 (AR R TR (S 540 L A Rt s e |

Fallback Fonts
text/

Prawn enables the declaration of fallback fonts for those glyphs that may not be present in

the desired font. Use the :fallback_fonts option with any of the text or text box methods, or
set fallback fonts document-wide.

jigmo_file = "#{Prawn::ManualBuilder::DATADIR}/fonts/Jigmo.ttf"

font_families['Jigmo'] = { normal: { file: jigmo_file, font: 'Jigmo' } }
panic_sans_file = "#{Prawn::ManualBuilder::DATADIR}/fonts/Panic+Sans.dfont"
font_families['Panic Sans'] = { normal: { file: panic_sans_file, font: 'PanicSans' } }

font('Panic Sans') do
text(

'When fallback fonts are included, each glyph will be rendered ' \
'using the first font that includes the glyph, starting with the ' \
"current font and then moving through the fallback fonts from left ' \
'to right.' \

"\n\n" \
"hello f fKaf\nfrll f goodbye",
fallback_fonts: %w[Times-Roman Jigmo],
)
end
move_down 20

formatted_text(
[
{ text: 'Fallback fonts can even override' },
{ text: 'fragment fonts (fK#%f)', font: 'Times-Roman' },
e
fallback_fonts: %w[Times-Roman Jigmo],

)

When fallback fonts are included, each glyph will be rendered using the
first font that includes the glyph, starting with the current font and
then moving through the fallback fonts from left to right.

hello f fK&f
HIL f goodbye

Fallback fonts can even overridefragment fonts (f/R4F)

Windown-1252 Charset
text/

Here's a list of all of the glyphs that can be rendered by Adobe's built in fonts, along with
their character widths and WinAnsi codes. Be sure to pass these glyphs as UTF-8, and
Prawn will transcode them for you.

font 'Helvetica', size: 18

8
bounds.

fields = [[26, :right], [8, :left], [12, :center], [30, :right], [8, :left], [8, :left]]

Prawn: :Encoding: :WinAnsi: :CHARACTERS. do |name, index|
next if name == '.notdef'

y -= font_size

if y < font_size
y = bounds. - font_size
x += 176

end

code = format('%<index>d.', index: index)
char = index.chr. (::Encoding: :Windows_1252)

width = 1688 * width_of(char, size: font_size) / font_size
size = format('%<width>d', width: width)

data = [code, nil, char, size, nil, name]
dx =
fields.zip(data). do |(total_width, align), field|
if field
width = width_of(field, size: font_size)

case align

when :left then offset = 8

when :right then offset = total_width - width

when :center then offset = (total_width - width) / 2
end

text_box(field.dup. ('windows-1252"). ('UTF-8'), at: [dx + offset, yl)
end

dx += total_width
end
end

+ o~ R NBH -

OCONOOUPRWNRFRLO~-

St N<XXSE<CHNTOTVOZZEr RCG—IOTMUOTBQ OV Il A----

gl

——30Q -~D0DQOTQ®

278
278
355
556
556
889
667
191
333
333
389
584
278
333
278
278
556
556
556
556
556
556
556
556
556
556
278
278
584
584
584
556
1015
667
667
722
722
667
611
778
722
278
500
667
556
833
722
778
667
778
722
667
611
722
667
944
667
667
611
278
278
278
469
556
333
556
556
500
556
556
278
556
556
222
222

space
exclam
quotedbl
numbersign
dollar
percent
ampersand
guotesingle
parenleft
parenright
asterisk
plus
comma
hyphen
period
slash

zero

one

two

three

four

five

SiX

seven
eight

nine

colon
semicolon
less

equal
greater
guestion

at

N<Xs<CHOITOTOZZIr A~ IOTMMUO®>

bracketleft
backslash
bracketright
asciicircum
underscore
grave

— T DQ T Qo0 TY

107.
108.
109.
110.
111.
112.
113.

115.
116.
117.
118.
119.
120.
121.
122.
123.
124.
125.
126.
128.
130.
131.
132.
133.
134.
135.
136.
137.
138.
139.
140.
142.
145.
146.
147.
148.
149.
150.
151.
152.
153.
154.
155.
156.
158.
159.
160.
161.
162.
163.
164.
165.
166.
167.
168.
169.
170.
171.
172.
173.

175.
176.
177.
178.
179.
180.
181.
182.
183.
184.
185.
186.
187.

Ml ~—~N< XS<C—~W-~QTO>S3 —x

~n -

- —N(m/\ U)(g\o sH —+ =

13

<N v o 3

2@ :w--+«K Othe-—

@ 1 A

N w N[+ o

- =AT

O v

500
222
833
556
556
556
556
333
500
278
556
500
722
500
500
500
334
260
334
584
556
222
556
333
1000
556
556
333
1000
667
333
1000
611
222
222
333
333
350
556
1000
333
1000
500
333
944
500
500
278
333
556
556
556
556
260
556
333
737
370
556
584
333
737
333
400
584
333
333
333
556
537
278
333
333
365
556

N< Xs<c~Tw~—-"0oTOS3—~X

braceleft

bar
braceright
asciitilde
Euro
guotesinglbase
florin
quotedblbase
ellipsis
dagger
daggerdbl
circumflex
perthousand
Scaron
guilsinglleft
OE

Zcaron
quoteleft
quoteright
quotedblleft
quotedblright
bullet
endash
emdash

tilde
trademark
scaron
guilsinglright
oe

zcaron
ydieresis
space
exclamdown
cent

sterling
currency

yen
brokenbar
section
dieresis
copyright
ordfeminine
guillemotleft
logicalnot
hyphen
registered
macron
degree
plusminus
twosuperior
threesuperior
acute

mu
paragraph
periodcentered
cedilla
onesuperior
ordmasculine
guillemotright

188.
189.
190.
191.
192.
193.
194.
195.
196.
197.
198.
199.
200.
201.
202.
203.
204.
205.
206.
207.
208.
209.
210.
211.
212.
213.
214,
215.
216.
217.
218.
219.
220.
221.
222,
223.
224,
225.
226.
227.
228.
229.
230.
231.
232.
233.
234.
235.
236.
237.
238.
239.
240.
241,
242.
243.
244,
245,
246.
247.
248.
249,
250.
251.
252.
253.
254,
255.

NN

KT COoOoCy |- 0:000 00 St Qx —: — — — (D: (D> D DO ?3 Do MW DY R T LC:OCC X O:0: 00021 — —— —/[TEMP M TIO) Fﬁ To > > DO J;\""

834
834
834
611
667
667
667
667
667
667
1000
722
667
667
667
667
278
278
278
278
722
722
778
778
778
778
778
584
778
722
722
722
722
667
667
611
556
556
556
556
556
556
889
500
556
556
556
556
278
278
278
278
556
556
556
556
556
556
556
584
611
556
556
556
556
500
556
500

onequarter
onehalf
threequarters
questiondown
Agrave
Aacute
Acircumflex
Atilde
Adieresis
Aring

AE

Ccedilla
Egrave
Eacute
Ecircumflex
Edieresis
Igrave
lacute
Icircumflex
Idieresis
Eth

Ntilde
Ograve
Oacute
Ocircumflex
Otilde
Odieresis
multiply
Oslash
Ugrave
Uacute
Ucircumflex
Udieresis
Yacute
Thorn
germandbls
agrave
aacute
acircumflex
atilde
adieresis
aring

ae

ccedilla
egrave
eacute
ecircumflex
edieresis
igrave
iacute
icircumflex
idieresis
eth

ntilde
ograve
oacute
ocircumflex
otilde
odieresis
divide
oslash
ugrave
uacute
ucircumflex
udieresis
yacute
thorn
ydieresis

Bounding Box

Bounding boxes are the basic containers for structuring the content flow. Even being low
level building blocks sometimes their simplicity is very welcome.

The examples show:

e How to create bounding boxes with specific dimensions

e How to inspect the current bounding box for its coordinates
¢ Stretchy bounding boxes

e Nested bounding boxes

e Indent blocks

Bounding Box Creation
bounding_box/

If you've read the basic concepts examples you probably know that the origin of a page is
on the bottom left corner and that the content flows from top to bottom.

You also know that a Bounding Box is a structure for helping the content flow.

A bounding box can be created with the bounding_box method. Just provide the top left
corner, a required :width option and an optional :height.

bounding_box([268, cursor - 180], width: 208, height: 108) do
text 'Just your regular bounding box'

transparent(0.5) { stroke_bounds }
end

Just your regular bounding box

Bounding Box Creation
bounding_box/

The bounds method returns the current bounding box. This is useful because the
Prawn: :BoundingBox exposes some nice boundary helpers.

top, bottom, left and right methods return the bounding box boundaries relative to its
translated origin. top_left, top_right, bottom_left and bottom_right return those boundaries
pairs inside arrays.

All these methods have an "absolute" version like absolute_right. The absolute version
returns the same boundary relative to the page absolute coordinates.

The following snippet shows the boundaries for the margin box side by side with the
boundaries for a custom bounding box.

def print_coordinates
text("top: #{bounds.top}")
text("bottom: #{bounds. |3
text("left: #{bounds. i)
text("right: #{bounds. I3

move_down(18)

text("absolute top: #{Float(bounds. . @)

text("absolute bottom: #{Float(bounds.). @)1

text("absolute left: #{Float(bounds. . @1

text("absolute right: #{Float(bounds. .)
end

move_down 20
text 'Margin box bounds:'

move_down 5
print_coordinates

bounding_box([250, cursor + 140], width: 2080, height: 158) do
text 'This bounding box bounds:'

move_down 5

print_coordinates

transparent(6.5) { stroke_bounds }
end

Margin box bounds:

top: 769.89
bottom: 0
left: O

right: 523.28

absolute top: 805.89
absolute bottom: 36.0
absolute left: 36.0
absolute right: 559.28

his bounding box bounds:

top: 150
bottom: O
left: O
right: 200

absolute top: 786.04
absolute bottom: 636.04
absolute left: 286.0
absolute right: 486.0

Stretchy Bounding Box

bounding_box/

Bounding Boxes accept an optional :height parameter. Unless it is provided the bounding
box will be stretchy. It will expand the height to fit all content generated inside it.

y_position = cursor
bounding_box([8, y_position], width: 200, height: 188) do
text 'This bounding box has a height of 18@8. If this text gets too large ' \

'it will flow to the next page.'

transparent(0.5) { stroke_bounds }
end

bounding_box([368, y_position], width: 268) do

text 'This bounding box has variable height. No matter how much text is ' \

'written here, the height will expand to fit.'

text ' _' * 100
text ' *' * 100

transparent(6.5) { stroke_bounds }
end

his bounding box has a height of
100. If this text gets too large it will
flow to the next page.

his bounding box has variable
height. No matter how much text is
written here, the height will expand to
fit.

Lk S e R I e
kkkkkhkhkkhkhkkhkhkkhkhkkhhkkhhkkhhkkhkhkkhkkkhkk*k
kkkkkkkhkkhkkhkkhkhkkkkkhkkhkkhkkhkkkkkk k%

kkhkkhkkhkkhkhkkhkkrkhkhkkkhkhkhkhkkikhkhkhkhkhkkhk*k

Nesting Bounding Boxes

bounding_box/

Normally when we provide the top left corner of a bounding box we express the coordinates
relative to the margin box. This is not the case when we have nested bounding boxes. Once
nested the inner bounding box coordinates are relative to the outer bounding box.

This example shows some nested bounding boxes with fixed and stretchy heights. Note how
the cursor method returns coordinates relative to the current bounding box.

def box_content(string)

text(string)

transparent(0.5) { stroke_bounds }
end

gap = 20
bounding_box([58, cursor], width: 4080, height: 208) do
box_content('Fixed height')

bounding_box([gap, cursor - gap], width: 368) do
text 'Stretchy height'

bounding_box([gap, bounds. - gap], width: 108) do
text 'Stretchy height'
transparent(0.5) do
LERIIED)
stroke_bounds
undash
end
end

bounding_box([gap * 7, bounds. - gap], width: 168, height: 58) do
box_content('Fixed height')
end

transparent(6.5) do
dash(1)
stroke_bounds
undash
end
end

bounding_box([gap, cursor - gap], width: 308, height: 58) do
box_content('Fixed height')
end
end

eight

Example Output

Stretchy heignt

Stretchy height

Fixed height

IXxed heignt

Bounding Box Indentation
bounding_box/

Sometimes you just need to indent a portion of the contents of a bounding box, and using a
nested bounding box is pure overkill. The indent method is what you might need.

Just provide a number for it to indent all content generated inside the block.

text 'No indentation on the margin box.'
indent(28) do

text 'Some indentation inside an indent block.
end
move_down 28

bounding_box([50, cursor], width: 468, height: cursor) do
transparent(8.5) { stroke_bounds }

move_down 10
text 'No indentation inside this bounding box.'
indent(48) do
text 'Inside an indent block. And so is this horizontal line:'

stroke_horizontal_rule
end
move_down 10
text 'No indentation'

move_down 20
indent(68) do
text 'Another indent block.'

bounding_box([8, cursor], width: 208) do
text 'Note that this bounding box coordinates are relative to the indent block'

transparent(0.5) { stroke_bounds }
end
end
end

No indentation on the margin box.
Some indentation inside an indent block.

No indentation inside this bounding box.
Inside an indent block. And so is this horizontal line:

No indentation

Another indent block.
Note that this bounding box

coordinates are relative to the indent
block

Canvas
bounding_box/

The origin example already mentions that a new document already comes with a margin
box whose bottom left corner is used as the origin for calculating coordinates.

What has not been told is that there is one helper for "bypassing" the margin box: canvas.
This method is a shortcut for creating a bounding box mapped to the absolute coordinates
and evaluating the code inside it.

The following snippet draws a circle on each of the four absolute corners.

canvas do
fill_circle [bounds. , bounds.top], 30
fill_circle [bounds. , bounds.top], 36

fill_circle [bounds. , bounds. 1, 30
fill_circle [0, 0], 30
end

Recursive Boxes
bounding_box/

This example is mostly just for fun, and shows how nested bounding boxes can simplify
calculations. See the "Bounding Box" section of the manual for more basic uses.

def combine(horizontal_span, vertical_span)
vertical_span. do |yl
horizontal_span.zip([y] * horizontal_span.
end
end

def recurse_bounding_box(max_depth = 4, depth = 1)
width = (bounds. -156) / 2
height = (bounds. -15) [/ 2
left_top_corners = combine([5, bounds. - width - 5], [bounds. - 5, height + 5])

left_top_corners. do |1t]
bounding_box(1t, width: width, height: height) do
stroke_bounds
recurse_bounding_box(max_depth, depth + 1) if depth < max_depth
end
end
end

recurse_bounding_box

Layout

Prawn has support for two-dimensional grid based layouts out of the box.
The examples show:
e How to define the document grid

e How to configure the grid rows and columns gutters

e How to create boxes according to the grid

Simple Grid
layout/

The document grid on Prawn is just a table-like structure with a defined number of rows and
columns. There are some helpers to create boxes of content based on the grid coordinates.

define_grid accepts the following options which are pretty much self-explanatory: :rows,
:columns, :gutter, :row_gutter, :column_gutter.

The grid only need to be defined once, but since all the examples should be
able to run alone we are repeating it on every example

define_grid(columns: 5, rows: 8, gutter: 18)

text 'We defined the grid, roll over to the next page to see its outline'

start_new_page
grid.

We defined the grid, roll over to the next page to see its outline

Example Output

Boxes
layout/

After defined the grid is there but nothing happens. To start taking effect we need to use
the grid boxes.

grid has three different return values based on the arguments received. With no arguments
it will return the grid itself. With integers it will return the grid box at those indices. With two
arrays it will return a multi-box spanning the region of the two grid boxes at the arrays
indices.

The grid only need to be defined once, but since all the examples should be
able to run alone we are repeating it on every example

define_grid(columns: 5, rows: 4, gutter: 18)

grid(e, 8).
grid(1, 1).

grid([2, 2], [3, 3D).

grid([e, 41, [3, 41).
grid((3, o], [3, 1D).

0,0 0,4:3,4

11

2,2:3,3

3,0:3,1

Content
layout/

Now that we know how to access the boxes we might as well add some content to them.

This can be done by taping into the bounding box for a given grid box or multi-box with the
bounding_box method.

The grid only need to be defined once, but since all the examples should be
able to run alone we are repeating it on every example
define_grid(rows: 4, columns: 5, gutter: 18)

grid([1, 6], [3, 11). do
text "Adding some content to this multi_box.\n#{' _ ' * 2@0}"

end

grid(2, 3). do
text "Just a little snippet here.\n#f{' _ ' * 18}"
end

Adding some content to this
multi_box.

_______________ Just a little
_______________ snippet here.

Prawn::Table

As of Prawn 1.2.0, Prawn::Table has been extracted into its own semi-officially supported
gem.

Please see https://github.com/prawnpdf/prawn-table for more details.

This code snippet was not evaluated inline. You may see its output by running

the example file located here:
https://github.com/prawnpdf/prawn/tree/master/manual/table.rb

https://github.com/prawnpdf/prawn-table
https://github.com/prawnpdf/prawn/tree/master/manual/table.rb

Images

Embedding images on PDF documents is fairly easy. Prawn supports both JPG and PNG
images.

The examples show:
e How to add an image to a page

e How place the image on a specific position

e How to configure the image dimensions by setting the width and height or by
scaling it

Plain Image

images/

To embed images onto your PDF file use the image method. It accepts the file path of the
image to be loaded and some optional arguments.

If only the image path is provided the image will be rendered starting on the cursor
position. No manipulation is done with the image even if it doesn't fit entirely on the page
like the following snippet.

text 'The image will go right below this line of text.'

image "#{Prawn::DATADIR}/images/pigs.jpg"

The image will go right below this line of text.

Absolute Positioning

images/absolute_position.rb

One of the options that the image method accepts is :at. If you've read some of the graphics
examples you are probably already familiar with it. Just provide it the upper-left corner
where you want the image placed.

While sometimes useful this option won't be practical. Notice that the cursor won't be
moved after the image is rendered and there is nothing forbidding the text to overlap with
the image.

y_position = cursor
text

image 3¢ , at: [2088, y_position]

text

The image won't go below this line of .
And this line of text will go just below the previous or

Horizontal Positioning

images/

The image may be positioned relatively to the current bounding box. The horizontal position
may be set with the :position option.

It may be :left, :center, :right or a number representing an x-offset from the left boundary.

bounding_box([50, cursor], width: 468, height: 458) do
stroke_bounds

%i[left center right]. do |position]|
text "Image aligned to the #{position}."
image "#{Prawn::DATADIR}/images/stef.jpg", position: position

end

text 'The next image has a 58 point offset from the left boundary
image "#{Prawn::DATADIR}/images/stef.jpg", position: 58
end

Image aligned to the left.

Image aligned to the center.

Image aligned to the right.

The next image has a 50 point offset from the left boundary

Vertical Positioning

images/

To set the vertical position of an image use the :vposition option.

It may be :top, :center, :bottom or a number representing the y-offset from the top
boundary.

bounding_box([8, cursor], width: 568, height: 458) do
stroke_bounds

%i[top center bottom]. do |vposition|
text "Image vertically aligned to the #{vposition}.", valign: vposition
image "#{Prawn::DATADIR}/images/stef.jpg",
position: 220,
vposition: vposition
end

text_box 'The next image has a 108 point offset from the top boundary',
at: [bounds. - 110, bounds. - 10],
width: 1600

image "#{Prawn::DATADIR}/images/stef.jpg",
position: :right,

vposition: 1600
end

Image vertically aligned to the top. h "

e next image
has a 100 point
offset from the top
boundary

Image vertically aligned to the center.

Image vertically aligned to the bottom.

Width and Height

images/

The image size can be set with the :width and :height options.

If only one of those is provided, the image will be scaled proportionally. When both are
provided, the image will be stretched to fit the dimensions without maintaining the aspect
ratio.

text 'Scale by setting only the width'
image "#{Prawn::DATADIR}/images/pigs.jpg", width: 158
move_down 10

text 'Scale by setting only the height'

image "#{Prawn::DATADIR}/images/pigs.jpg", height: 88
move_down 18

text 'Stretch to fit the width and height provided'
image "#{Prawn::DATADIR}/images/pigs.jpg", width: 588, height: 108

Scale by setting only the width
=

Scaling Pmages

images/

To scale an image use the :scale option.

It scales the image proportionally given the provided value.

text 'Normal size'
image "#{Prawn::DATADIR}/images/stef.jpg"

move_down 10

text 'Scaled to 50%'
image "#{Prawn::DATADIR}/images/stef.jpg", scale: 8.5
move_down 10

text 'Scaled to 200%'
image "#{Prawn::DATADIR}/images/stef.jpg", scale: 2

Normal size

Scaled to 50%

Scaled to 200%

Fiting

images/

:fit option is useful when you want the image to have the maximum size within a container
preserving the aspect ratio without overlapping.

Just provide the container width and height pair.

size = 3060

text 'Using the fit option'

bounding_box([8, cursor], width: size, height: size) do
image "#{Prawn::DATADIR}/images/pigs.jpg", fit: [size, size]
stroke_bounds

end

Using the fit option

Document and Page Options

So far we've already seen how to create new documents and start new pages. This chapter
expands on the previous examples by showing other options avialable. Some of the options
are only available when creating new documents.

The examples show:
e How to configure page size
e How to configure page margins

e How to use a background image

e How to add metadata to the generated PDF

Page Size

document_and_page_options/

Prawn comes with support for most of the common page sizes so you'll only need to provide
specific values if your intended format is not supported. To see a list with all supported sizes

take a look at PDF::Core::PageGeometry.

To define the size use :page_size when creating new documents and :size when starting
new pages. The default page size for new documents is LETTER (612.00 x 792.00).

You may also define the orientation of the page to be either portrait (default) or landscape.
Use :page_layout when creating new documents and :layout when starting new pages.

Prawn: :Document.
"example.pdf’,
page_size: 'EXECUTIVE',
page_layout: :landscape,
) do
text 'EXECUTIVE landscape page.'

custom_size = [275, 326]

["A4", 'TABLOID', 'B7', custom_size]. do |size|

start_new_page(size: size, layout: :portrait)
text "#{size} portrait page."

start_new_page(size: size, layout: :landscape)
text "#{size} landscape page."
end
end

This code snippet was not evaluated inline. You may see its output by running
the example file located here:
https://github.com/prawnpdf/prawn/tree/master/manual/

document_and_page_options/page_size.rb

https://github.com/prawnpdf/prawn/tree/master/manual/document_and_page_options/page_size.rb
https://github.com/prawnpdf/prawn/tree/master/manual/document_and_page_options/page_size.rb

Page Margins

document_and_page_options/

The default margin for pages is 0.5 inch but you can change that with the :margin option or
if you'd like to have different margins you can use the :left_margin, :right_margin,
:top_margin, :bottom_margin options.

These options are available both for starting new pages and creating new documents.

Prawn: :Document. ('example.pdf', margin: 108) do
text '180 pts margins.'
stroke_bounds

start_new_page(left_margin: 300)
text '300 pts margin on the left.'
stroke_bounds

start_new_page(top_margin: 300)
text '308 pts margin both on the top and on the left. Notice that whenever ' \
'vou set an option for a new page it will remain the default for the ' \

'following pages.'
stroke_bounds

start_new_page(margin: 50)

text '50 pts margins. Using the margin option will reset previous specific ' \
‘calls to left, right, top and bottom margins.'

stroke_bounds

start_new_page(margin: [58, 106, 158, 206])
text 'There is also the shorthand CSS like syntax used here.'
stroke_bounds

end

This code snippet was not evaluated inline. You may see its output by running
the example file located here:
https://github.com/prawnpdf/prawn/tree/master/manual/
document_and_page_options/page_margins.rb

https://github.com/prawnpdf/prawn/tree/master/manual/document_and_page_options/page_margins.rb
https://github.com/prawnpdf/prawn/tree/master/manual/document_and_page_options/page_margins.rb

Background

document_and_page_options/

Pass an image path to the :background option and it will be used as the background for all
pages.

This option can only be used on document creation.

img = "#{Prawn::DATADIR}/images/letterhead. jpg"

Prawn: :Document. ('example.pdf', background: img, margin: 1680) do
text 'My report caption', size: 18, align: :right

move_down font. w9

text 'Here is my text explaining this report. ' * 28,
size: 12,
align: :left,
leading: 2

move_down font.

text "I'm using a soft background. " * 4@,
size: 12,
align: :left,
leading: 2
end

This code snippet was not evaluated inline. You may see its output by running
the example file located here:
https://github.com/prawnpdf/prawn/tree/master/manual/
document_and_page_options/background.rb

https://github.com/prawnpdf/prawn/tree/master/manual/document_and_page_options/background.rb
https://github.com/prawnpdf/prawn/tree/master/manual/document_and_page_options/background.rb

Document Metadata

document_and_page_options/

To set the document metadata just pass a hash to the :info option when creating new
documents.

The keys in the example below are arbitrary, so you may add whatever keys you want.

info =
Title: 'My title',
Author: 'John Doe',
Subject: 'My Subject',
Keywords: 'test metadata ruby pdf dry',
Creator: 'ACME Soft App',
Producer: 'Prawn',
CreationDate: Time.now,

Prawn::Document. ('example.pdf', info: info) do
text 'This is a test of setting metadata properties via the info option.'
text 'While the keys are arbitrary, the above example sets common attributes.'

end

This code snippet was not evaluated inline. You may see its output by running
the example file located here:
https://github.com/prawnpdf/prawn/tree/master/manual/
document_and_page_options/metadata.rb

https://github.com/prawnpdf/prawn/tree/master/manual/document_and_page_options/metadata.rb
https://github.com/prawnpdf/prawn/tree/master/manual/document_and_page_options/metadata.rb

Print Scaling

document_and_page_options/

(Optional; PDF 1.6) The page scaling option to be selected when a print dialog is displayed
for this document. Valid values are None, which indicates that the print dialog should reflect
no page scaling, and AppDefault, which indicates that applications should use the current
print scaling. If this entry has an unrecognized value, applications should use the current
print scaling. Default value: AppDefault.

Note: If the print dialog is suppressed and its parameters are provided directly by the
application, the value of this entry should still be used.

Prawn: :Document.
"example.pdf',
page_layout: :landscape,
print_scaling: :none,

) do

text 'When you print this document, the scale to fit in print preview ' \

'should be disabled by default.'
end

This code snippet was not evaluated inline. You may see its output by running
the example file located here:
https://github.com/prawnpdf/prawn/tree/master/manual/

document_and_page_options/print_scaling.rb

https://github.com/prawnpdf/prawn/tree/master/manual/document_and_page_options/print_scaling.rb
https://github.com/prawnpdf/prawn/tree/master/manual/document_and_page_options/print_scaling.rb

Outline

The outline of a PDF document is the table of contents tab you see to the right or left of
your PDF viewer.

The examples include:

e How to define sections and pages

e How to insert sections and/or pages to a previously defined outline structure

Sections and Pages

outline/sections_and_pages.rb

The document outline tree is the set of links used to navigate through the various
document sections and pages.

To define the document outline we first use the outline method to lazily instantiate an
outline object. Then we use the define method with a block to start the outline tree.

The basic methods for creating outline nodes are section and page. The only difference
between the two is that page doesn't accept a block and will only create leaf nodes while
section accepts a block to create nested nodes.

section accepts the title of the section and two options: :destination - a page number to link
and :closed - a boolean value that defines if the nested outline nodes are shown when the
document is open (defaults to true).

page is very similar to section. It requires a :title option to be set and accepts a
:destination.

section and page may also be used without the define method but they will need to
instantiate the outline object every time.

First we create 18 pages just to have something to link to
(1..109). do |index|

text "Page #{index}"

start_new_page
end

outline. (o[o]
section('Section 1', destination: 1) do
page title: 'Page 2', destination: 2
page title: 'Page 3', destination: 3
end

section('Section 2', destination: 4) do
page title: 'Page 5', destination: 5

section('Subsection 2.1', destination: 6, closed: true) do
page title: 'Page 7', destination: 7
end
end
end

Outside of the define block

outline. ('Section 3', destination: 8) do
outline. (title: 'Page 9', destination: 9)

end

outline. (title: 'Page 18', destination: 18)

Section and Pages without links. While a section without a link may be
useful to group some pages, a page without a link is useless
outline. do # update is an alias to define
section('Section without 1link') do
page title: 'Page without link'
end
end

This code snippet was not evaluated inline. You may see its output by running
the example file located here:
https://github.com/prawnpdf/prawn/tree/master/manual/outline/
sections_and_pages.rb

https://github.com/prawnpdf/prawn/tree/master/manual/outline/sections_and_pages.rb
https://github.com/prawnpdf/prawn/tree/master/manual/outline/sections_and_pages.rb

Adding a Subsection to the Outline Tree

outline/add_subsection_to.rb

We have already seen how to define an outline tree sequentially.

If you'd like to add nodes to the middle of an outline tree the add_subsection_to may help
you.

It allows you to insert sections to the outline tree at any point. Just provide the title of the
parent section, the position you want the new subsection to be inserted :first or :last
(defaults to :1last) and a block to declare the subsection.

The add_subsection_to block doesn't necessarily create new sections, it may also create new
pages.

If the parent title provided is the title of a page. The page will be converted into a section to
receive the subsection created.

First we create 18 pages and some default outline

(1..18).

do |index|

text "Page #{index}"
start_new_page

end

outline.

do

section('Section 1', destination: 1) do

page title: 'Page 2', destination: 2

page title: 'Page 3', destination: 3

end
end

Now we will start adding nodes to the previous outline

outline.
outline.

outline.
outline.

('Section 1', :first) do
('Added later - first position') do
(title: 'Page 4', destination: 4)
(title: 'Page 5', destination: 5)

end
end
outline. ('Section 1') do
outline. (title: 'Added later - last position', destination: 6)
end
outline. ('Added later - first position') do

outline.

(title: 'Another page added later', destination: 7)

end

The title provided is for a page which will be converted into a section
('Page 3') do
(title: 'Last page added', destination: 8)

outline.
outline.
end

This code snippet was not evaluated inline. You may see its output by running
the example file located here:
https://github.com/prawnpdf/prawn/tree/master/manual/outline/
add_subsection_to.rb

https://github.com/prawnpdf/prawn/tree/master/manual/outline/add_subsection_to.rb
https://github.com/prawnpdf/prawn/tree/master/manual/outline/add_subsection_to.rb

Insert Section After

outline/

Another way to insert nodes into an existing outline is the insert_section_after method.

It accepts the title of the node that the new section will go after and a block declaring the
new section.

As is the case with add_subsection_to the section added doesn't need to be a section, it may
be just a page.

First we create 18 pages and some default outline
(1..18). do |index|

text "Page #{index}"

start_new_page
end

outline. do
section('Section 1', destination: 1) do

page title: 'Page 2', destination: 2
page title: 'Page 3', destination: 3
end
end

Now we will start adding nodes to the previous outline
outline. ('Page 2') do
outline. ('Section after Page 2') do
outline. (title: 'Page 4', destination: 4)
end
end

outline. ('Section 1') do
outline. ('Section after Section 1') do
outline. (title: 'Page 5', destination: 5)
end
end

Adding just a page
outline. ('Page 3') do

outline. (title: 'Page after Page 3', destination: 6)
end

This code snippet was not evaluated inline. You may see its output by running
the example file located here:
https://github.com/prawnpdf/prawn/tree/master/manual/outline/

insert_section_after.rb

https://github.com/prawnpdf/prawn/tree/master/manual/outline/insert_section_after.rb
https://github.com/prawnpdf/prawn/tree/master/manual/outline/insert_section_after.rb

Repeatable Content

Prawn offers two ways to handle repeatable content blocks. Repeater is useful for content
that gets repeated at well defined intervals while Stamp is more appropriate if you need
better control of when to repeat it.

There is also one very specific helper for numbering pages.

The examples show:

e How to repeat content on several pages with a single invocation
e How to create a new Stamp
e How to "stamp" the content block on the page

e How to number the document pages with one simple call

Repeater

repeatable_content/

The repeat method is quite versatile when it comes to define the intervals at which the
content block should repeat.

The interval may be a symbol (:all, :o0dd, :even), an array listing the pages, a range or a Proc
that receives the page number as an argument and should return true if the content is to be
repeated on the given page.

You may also pass an option :dynamic to reevaluate the code block on every call which is
useful when the content changes based on the page number.

It is also important to say that no matter where you define the repeater it will be applied to
all matching pages.

repeat(:all) do
draw_text 'All pages', at: bounds.
end

repeat(:odd) do
draw_text 'Only odd pages', at: [0, 0]
end

repeat(:even) do
draw_text 'Only even pages', at: [08, 8]
end

repeat([1, 3, 7]) do
draw_text 'Only on pages 1, 3 and 7', at: [160, 8]
end

repeat(2..4) do
draw_text 'From the 2nd to the 4th page', at: [300, 0]
end

repeat(->(pg) { (pg % 3).zero? }) do
draw_text 'Every third page', at: [258, 20]
end

repeat(:all, dynamic: true) do
draw_text page_number, at: [500, @]

end

10. do

start_new_page

draw_text 'A wonderful page', at: [468, 400]
end

This code snippet was not evaluated inline. You may see its output by running
the example file located here:

https://github.com/prawnpdf/prawn/tree/master/manual/repeatable_content/
repeater.rb

https://github.com/prawnpdf/prawn/tree/master/manual/repeatable_content/repeater.rb
https://github.com/prawnpdf/prawn/tree/master/manual/repeatable_content/repeater.rb

Stamp

repeatable_content/

Stamps should be used when you have content that will be included multiple times in a
document. Its advantages over creating the content anew each time are:

1. Faster document creation
2. Smaller final document

3. Faster display on subsequent displays of the repeated element because the
viewer application can cache the rendered results

The create_stamp method does just what it says. Pass it a block with the content that should
be generated and the stamp will be created.

There are two methods to render the stamp on a page stamp and stamp_at. The first will
render the stamp as is while the second accepts a point to serve as an offset to the stamp
content.

create_stamp('approved') do
rotate(30, origin: [-5, -5]) do
stroke_color 'FF3333'
stroke_ellipse [0, 8], 29, 15
stroke_color '000068'

fill_color '993333'
font('Times-Roman') do
draw_text 'Approved', at: [-23, -3]
end
fill_color '000008'
end
end

stamp 'approved'

stamp_at 'approved', [260, 1080]

Page Numbering

repeatable_content/

The number_pages method is a simple way to number the pages of your document. It should
be called towards the end of the document since pages created after the call won't be
numbered.

It accepts a string and a hash of options:

® start_count_at is the value from which to start numbering pages

* total_pages If provided, will replace total with the value given. Useful for
overriding the total number of pages when using the start_count_at option.

* page_filter, which is one of: :all, :odd, :even, an array, a range, or a Proc that
receives the page number as an argument and should return true if the page
number should be printed on that page.

® color which accepts the same values as fill_color

* As well as any option accepted by text_box

text 'This is the first page!'

10. do

start_new_page

text 'Here comes yet another page.'
end

string = 'page <page> of <total>'
Green page numbers 1 to 7

options = {
at: [bounds. - 150, @],
width: 150,
align: :right,
page_filter: (1..7),

start_count_at: 1,
color: '6@87708',
}

number_pages string, options

Gray page numbers from 8 on up
options[:page_filter] = ->(pg) { pg > 7 }
options[:start_count_at] = 8
options[:color] = '333333'

number_pages string, options

start_new_page
text "See. This page isn't numbered and doesn't count towards the total."

This code snippet was not evaluated inline. You may see its output by running
the example file located here:

https://github.com/prawnpdf/prawn/tree/master/manual/repeatable_content/
page_numbering.rb

https://github.com/prawnpdf/prawn/tree/master/manual/repeatable_content/page_numbering.rb
https://github.com/prawnpdf/prawn/tree/master/manual/repeatable_content/page_numbering.rb

Alternating Page Numbering

repeatable_content/

Below is the code to generate page numbers that alternate being rendered on the right and
left side of the page. The first page will have a "1" in the bottom right corner. The second
page will have a "2" in the bottom left corner of the page. The third a "3" in the bottom
right, etc.

text 'This is the first page!'

0. do

start_new_page

text 'Here comes yet another page.'
end

string = '<page>'

odd_options = {
at: [bounds. - 150, @1,
width: 158,
align: :right,
page_filter: :odd,
start_count_at: 1,

}

even_options = {
at: [0, bounds. 1,
width: 1580,
align: :left,
page_filter: :even,
start_count_at: 2,

}

number_pages string, odd_options

number_pages string, even_options

This code snippet was not evaluated inline. You may see its output by running
the example file located here:
https://github.com/prawnpdf/prawn/tree/master/manual/repeatable_content/
alternate_page_numbering.rb

https://github.com/prawnpdf/prawn/tree/master/manual/repeatable_content/alternate_page_numbering.rb
https://github.com/prawnpdf/prawn/tree/master/manual/repeatable_content/alternate_page_numbering.rb

Security

Security lets you control who can read the document by defining a password.

The examples include:

e How to encrypt the document without the need for a password
e How to configure the regular user permissions
e How to require a password for the regular user

e How to set a owner password that bypass the document permissions

Encryption

security/

The encrypt_document method, as you might have already guessed, is used to encrypt the
PDF document.

Once encrypted whoever is using the document will need the user password to read the
document. This password can be set with the :user_password option. If this is not set the
document will be encrypted but a password will not be needed to read the document.

There are some caveats when encrypting your PDFs. Be sure to read the source
documentation (you can find it here: https://github.com/prawnpdf/prawn/blob/master/lib/
prawn/security.rb) before using this for anything super serious.

Bare encryption. No password needed.

Prawn::ManualBuilder::Example. ('bare_encryption.pdf') do
text 'See, no password was asked but the document is still encrypted.'
encrypt_document

end

Simple password. All permissions granted.
Prawn::ManualBuilder::Example. ('simple_password.pdf') do
text 'You was asked for a password.'

encrypt_document(user_password: 'foo', owner_password: 'bar')

end

This code snippet was not evaluated inline. You may see its output by running
the example file located here:
https://github.com/prawnpdf/prawn/tree/master/manual/security/encryption.rb

https://github.com/prawnpdf/prawn/blob/master/lib/prawn/security.rb
https://github.com/prawnpdf/prawn/blob/master/lib/prawn/security.rb
https://github.com/prawnpdf/prawn/tree/master/manual/security/encryption.rb

Permissions

security/

Some permissions may be set for the regular user with the following options:
:print_document, :modify_contents, :copy_contents, :modify_annotations. All this options default
to true, so if you'd like to revoke just set them to false.

A user may bypass all permissions if he provides the owner password which may be set
with the :owner_password option. This option may be set to :random so that users will never be
able to bypass permissions.

There are some caveats when encrypting your PDFs. Be sure to read the source
documentation (you can find it here: https://github.com/prawnpdf/prawn/blob/master/lib/
prawn/security.rb) before using this for anything super serious.

User cannot print the document.
Prawn: :Document. ('cannot_print.pdf') do
text "If you used the user password you won't be able to print the doc."
encrypt_document(
user_password: 'foo',
owner_password: ‘'bar',

permissions: { print_document: false },

)

end

All permissions revoked and owner password set to random
Prawn: :Document. ('no_permissions.pdf') do
text "You may only view this and won't be able to use the owner password."
encrypt_document(
user_password: 'foo',
owner_password: :random,
permissions: {
print_document: false,
modify_contents: false,
copy_contents: false,
modify_annotations: false,

This code snippet was not evaluated inline. You may see its output by running
the example file located here:
https://github.com/prawnpdf/prawn/tree/master/manual/security/permissions.rb

https://github.com/prawnpdf/prawn/blob/master/lib/prawn/security.rb
https://github.com/prawnpdf/prawn/blob/master/lib/prawn/security.rb
https://github.com/prawnpdf/prawn/tree/master/manual/security/permissions.rb

	
	Basic Concepts
	Creating a PDF Document
	Origin
	Cursor
	Other Cursor Helpers
	Adding Pages
	Measurement Extensions
	View

	Graphics
	Basics
	Stroke Axis
	Fill and Stroke

	Shapes
	Lines and Curves
	Common Lines
	Rectangles
	Polygons
	Circles and Ellipses

	Fill and Stroke Settings
	Line Width
	Stroke Cap
	Stroke Join
	Stroke Dash Pattern
	Color
	Gradients
	Transparency
	Soft Masks
	Blend Modes
	Fill Rules

	Transformations
	Rotation
	Translation
	Scaling

	Text
	Basics
	Free Flowing Text
	Positioned Text
	Text Box Overflow
	Text Box Excess
	Column Box

	Styling
	Fonts
	Font Size
	Font Style
	Color
	Alignment
	Leading
	Kerning and Character Spacing
	Paragraph Indentation
	Rotation

	Advanced Styling
	Inline Formatting
	Formatted Text
	Formatted Text Callbacks
	Text Rendering Modes
	Text Box Extensions

	External Fonts
	Single Usage Fonts
	Registering Font Families

	Multilingualization
	UTF-8
	Line Wrapping
	Right-to-Left Text
	Fallback Fonts
	Windown-1252 Charset

	Bounding Box
	Basics
	Bounding Box Creation
	Bounding Box Creation

	Advanced
	Stretchy Bounding Box
	Nesting Bounding Boxes
	Bounding Box Indentation
	Canvas
	Recursive Boxes

	Layout
	Simple Grid
	Boxes
	Content

	Prawn::Table
	Images
	Basics
	Plain Image
	Absolute Positioning

	Relative Positioning
	Horizontal Positioning
	Vertical Positioning

	Size
	Width and Height
	Scaling Pmages
	Fiting

	Document and Page Options
	Page Size
	Page Margins
	Background
	Document Metadata
	Print Scaling

	Outline
	Basics
	Sections and Pages

	Adding Nodes Later
	Adding a Subsection to the Outline Tree
	Insert Section After

	Repeatable Content
	Repeater
	Stamp
	Page Numbering
	Alternating Page Numbering

	Security
	Encryption
	Permissions

